Boundary Blow-up Solutions to Nonlocal Elliptic Systems of Cooperative Type

被引:0
作者
Chen, Huyuan [1 ]
Duan, Jinqiao [2 ]
Lv, Guangying [3 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Henan Univ, Inst Appl Math, Kaifeng 475001, Henan, Peoples R China
来源
ANNALES HENRI POINCARE | 2018年 / 19卷 / 07期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ASYMPTOTIC-BEHAVIOR; EQUATIONS; UNIQUENESS; REGULARITY; EXISTENCE;
D O I
10.1007/s00023-018-0668-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the boundary blow-up solutions to the nonlocal elliptic systems of cooperative type. By introducing the boundary measure, the boundary blow-up problem becomes a Cauchy problem. Then using the super-subsolution method, we obtain the existence and nonexistence of positive solutions. Moreover, we study the stability of the minimal solution to the Cauchy problem.
引用
收藏
页码:2115 / 2136
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 1996, Adv. Differ. Equ.
[2]  
[Anonymous], 1957, PACIFIC J MATH
[3]   Localization on the boundary of blow-up for reaction-diffusion equations with nonlinear boundary conditions [J].
Arrieta, JM ;
Rodríguez-Bernal, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (7-8) :1127-1148
[4]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS AND THEIR DERIVATIVES, FOR SEMILINEAR ELLIPTIC PROBLEMS WITH BLOWUP ON THE BOUNDARY [J].
BANDLE, C ;
MARCUS, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (02) :155-171
[5]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[6]  
Benilan P., 1975, ANN SCUOLA NORM SU S, V2, P523
[7]  
Blackledge J., 2010, INT J APPL MATH, V41, P130
[8]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[9]   Complete study of the existence and uniqueness of solutions for semilinear elliptic equations involving measures concentrated on boundary [J].
Chen, Huyuan ;
Alhomedan, Suad ;
Hajaiej, Hichem ;
Markowich, Peter .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (12) :1687-1729
[10]   Boundary blow-up solutions to nonlocal elliptic equations with gradient nonlinearity [J].
Chen, Huyuan ;
Lv, Guangying .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (05)