ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS

被引:36
作者
Grigor'yan, Alexander [1 ]
Hu, Jiaxin [2 ,3 ]
Lau, Ka-Sing [4 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Heat kernel; non-local Dirichlet form; effective resistance; SYMMETRIC JUMP-PROCESSES; METRIC MEASURE-SPACES; BROWNIAN-MOTION; UPPER-BOUNDS; HARMONIC-ANALYSIS; RESISTANCE FORMS; FRACTALS; GRAPHS; INEQUALITIES; MANIFOLDS;
D O I
10.1090/S0002-9947-2014-06034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present new heat kernel upper bounds for a certain class of non-local regular Dirichlet forms on metric measure spaces, including fractal spaces. We use a new purely analytic method where one of the main tools is the parabolic maximum principle. We deduce an off-diagonal upper bound of the heat kernel from the on-diagonal one under the volume regularity hypothesis, restriction of the jump kernel and the survival hypothesis. As an application, we obtain two-sided estimates of heat kernels for non-local regular Dirichlet forms with finite effective resistance, including settings with the walk dimension greater than 2.
引用
收藏
页码:6397 / 6441
页数:45
相关论文
共 50 条
[41]   Heat kernel for non-local operators with variable order [J].
Chen, Xin ;
Chen, Zhen-Qing ;
Wang, Jian .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (06) :3574-3647
[42]   Perturbation by non-local operators [J].
Chen, Zhen-Qing ;
Wang, Jie-Ming .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02) :606-639
[43]   Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces [J].
Alexander Grigor’yan ;
Jiaxin Hu .
Inventiones mathematicae, 2008, 174 :81-126
[44]   Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces [J].
Grigor'yan, Alexander ;
Hu, Jiaxin .
INVENTIONES MATHEMATICAE, 2008, 174 (01) :81-126
[45]   The Dirichlet heat kernel in inner uniform domains: Local results, compact domains and non-symmetric forms [J].
Lierl, Janna ;
Saloff-Coste, Laurent .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) :4189-4235
[46]   Concentration limit for non-local dissipative convection-diffusion kernels on the hyperbolic space [J].
Gonzalez, Maria del Mar ;
Ignat, Liviu I. ;
Manea, Dragons ;
Moroianu, Sergiu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 248
[47]   Non-Gaussian upper estimates for heat kernels on spaces of homogeneous type [J].
Yang, Dachun ;
Zhou, Yuan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :2155-2163
[48]   NEUMANN AND DIRICHLET HEAT KERNELS IN INNER UNIFORM DOMAINS [J].
Gyrya, Pavel ;
Saloff-Coste, Laurent .
ASTERISQUE, 2011, (336) :1-+
[49]   Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels [J].
Betsakos, Dimitrios .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) :413-427
[50]   ON-DIAGONAL HEAT KERNEL LOWER BOUND FOR STRONGLY LOCAL SYMMETRIC DIRICHLET FORMS [J].
Lou, Shuwen .
OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (03) :463-477