ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS

被引:36
作者
Grigor'yan, Alexander [1 ]
Hu, Jiaxin [2 ,3 ]
Lau, Ka-Sing [4 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Heat kernel; non-local Dirichlet form; effective resistance; SYMMETRIC JUMP-PROCESSES; METRIC MEASURE-SPACES; BROWNIAN-MOTION; UPPER-BOUNDS; HARMONIC-ANALYSIS; RESISTANCE FORMS; FRACTALS; GRAPHS; INEQUALITIES; MANIFOLDS;
D O I
10.1090/S0002-9947-2014-06034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present new heat kernel upper bounds for a certain class of non-local regular Dirichlet forms on metric measure spaces, including fractal spaces. We use a new purely analytic method where one of the main tools is the parabolic maximum principle. We deduce an off-diagonal upper bound of the heat kernel from the on-diagonal one under the volume regularity hypothesis, restriction of the jump kernel and the survival hypothesis. As an application, we obtain two-sided estimates of heat kernels for non-local regular Dirichlet forms with finite effective resistance, including settings with the walk dimension greater than 2.
引用
收藏
页码:6397 / 6441
页数:45
相关论文
共 50 条
[31]   The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure spaces [J].
Hu, Jiaxin ;
Li, Xuliang .
FORUM MATHEMATICUM, 2018, 30 (05) :1129-1155
[33]   LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS [J].
Aurada, M. ;
Feischl, M. ;
Fuhrer, T. ;
Karkulik, M. ;
Melenk, J. M. ;
Praetorius, D. .
MATHEMATICS OF COMPUTATION, 2017, 86 (308) :2651-2686
[34]   Laplace Dirichlet heat kernels in convex domains [J].
Serafin, G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 :700-732
[35]   Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees [J].
Kigami, Jun .
ADVANCES IN MATHEMATICS, 2010, 225 (05) :2674-2730
[36]   Estimates of heat kernels of non-symmetric Levy processes [J].
Grzywny, Tomasz ;
Szczypkowski, Karol .
FORUM MATHEMATICUM, 2021, 33 (05) :1207-1236
[37]   Gradient estimates for heat kernels and harmonic functions [J].
Coulhon, Thierry ;
Jiang, Renjin ;
Koskela, Pekka ;
Sikora, Adam .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (08)
[38]   Heat Kernels, Smoothness Estimates, and Exponential Decay [J].
Boggess, Albert ;
Raich, Andrew .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (01) :180-224
[39]   Heat kernel estimates for the Dirichlet fractional Laplacian [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1307-1329
[40]   Gaussian heat kernel estimates: From functions to forms [J].
Coulhon, Thierry ;
Devyver, Baptiste ;
Sikora, Adam .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 761 :25-79