ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS

被引:36
作者
Grigor'yan, Alexander [1 ]
Hu, Jiaxin [2 ,3 ]
Lau, Ka-Sing [4 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Heat kernel; non-local Dirichlet form; effective resistance; SYMMETRIC JUMP-PROCESSES; METRIC MEASURE-SPACES; BROWNIAN-MOTION; UPPER-BOUNDS; HARMONIC-ANALYSIS; RESISTANCE FORMS; FRACTALS; GRAPHS; INEQUALITIES; MANIFOLDS;
D O I
10.1090/S0002-9947-2014-06034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present new heat kernel upper bounds for a certain class of non-local regular Dirichlet forms on metric measure spaces, including fractal spaces. We use a new purely analytic method where one of the main tools is the parabolic maximum principle. We deduce an off-diagonal upper bound of the heat kernel from the on-diagonal one under the volume regularity hypothesis, restriction of the jump kernel and the survival hypothesis. As an application, we obtain two-sided estimates of heat kernels for non-local regular Dirichlet forms with finite effective resistance, including settings with the walk dimension greater than 2.
引用
收藏
页码:6397 / 6441
页数:45
相关论文
共 36 条
[1]  
[Anonymous], 1968, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], DIRICHLET FORMS SYMM
[3]  
Barlow M., 1998, Lecture Notes in Math., V1690, P1, DOI [10.1007/BFb0092537, DOI 10.1007/BFB0092537]
[4]   Heat kernel upper bounds for jump processes and the first exit time [J].
Barlow, Martin T. ;
Grigor'yan, Alexander ;
Kumagai, Takashi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 626 :135-157
[5]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[6]   Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs [J].
Barlow, MT ;
Coulhon, T ;
Kumagai, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1642-1677
[7]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[8]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[9]  
CARLEN EA, 1987, ANN I H POINCARE-PR, V23, P245
[10]   Heat kernel estimates for jump processes of mixed types on metric measure spaces [J].
Chen, Zhen-Qing ;
Kumagai, Takashi .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :277-317