Jackknife empirical likelihood for the error variance in linear models

被引:12
作者
Lin, Hui-Ling [1 ]
Li, Zhouping [2 ]
Wang, Dongliang [3 ]
Zhao, Yichuan [1 ]
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
[3] SUNY Upstate Med Univ, Dept Publ Hlth & Prevent Med, Syracuse, NY 13210 USA
基金
中国国家自然科学基金;
关键词
Confidence interval; empirical likelihood; error variance; jackknife empirical likelihood; linear regression; REGRESSION;
D O I
10.1080/10485252.2017.1285028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 2012, INTRO LINEAR REGRESS
[2]  
Carroll R. J., 1987, P 4 PURD S STAT DEC
[3]   LARGE DIMENSIONAL EMPIRICAL LIKELIHOOD [J].
Chen, Binbin ;
Pan, Guangming ;
Yang, Qing ;
Zhou, Wang .
STATISTICA SINICA, 2015, 25 (04) :1659-1677
[4]   Adjusted empirical likelihood and its properties [J].
Chen, Jiahua ;
Variyath, Asokan Mulayath ;
Abraham, Bovas .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) :426-443
[5]  
Chen SX, 2009, TEST-SPAIN, V18, P415, DOI 10.1007/s11749-009-0159-5
[6]   Smoothed jackknife empirical likelihood method for ROC curve [J].
Gong, Yun ;
Peng, Liang ;
Qi, Yongcheng .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (06) :1520-1531
[7]  
HALL P, 1989, J ROY STAT SOC B MET, V51, P3
[8]   Jackknife Empirical Likelihood [J].
Jing, Bing-Yi ;
Yuan, Junqing ;
Zhou, Wang .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1224-1232
[9]   A PENALIZED EMPIRICAL LIKELIHOOD METHOD IN HIGH DIMENSIONS [J].
Lahiri, Soumendra N. ;
Mukhopadhyay, Subhadeep .
ANNALS OF STATISTICS, 2012, 40 (05) :2511-2540
[10]   On Nonsmooth Estimating Functions via Jackknife Empirical Likelihood [J].
Li, Zhouping ;
Xu, Jinfeng ;
Zhou, Wang .
SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (01) :49-69