GLOBAL STRONG SOLUTIONS OF THE FULL NAVIER-STOKES AND Q-TENSOR SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS IN TWO DIMENSIONS

被引:30
作者
Cavaterra, Cecilia [1 ]
Rocca, Elisabetta [1 ,2 ]
Wu, Hao [3 ,4 ]
Xu, Xiang [5 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Weierstr Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[5] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
nematic liquid crystal flow; Q-tensor system; global strong solution; uniqueness of asymptotic limit; DE-GENNES THEORY; EVOLUTION-EQUATIONS; WELL-POSEDNESS; WEAK SOLUTIONS; EXISTENCE; REGULARITY; EQUILIBRIUM;
D O I
10.1137/15M1048550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a full Navier-Stokes and Q-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time. This result is obtained without any smallness assumption on the physical parameter. that measures the ratio between tumbling and aligning effects of a shear flow exerting over the liquid crystal directors. Moreover, we show the uniqueness of asymptotic limit for each global strong solution as time goes to infinity and provide an uniform estimate on the convergence rate.
引用
收藏
页码:1368 / 1399
页数:32
相关论文
共 42 条
[1]  
Abels H, 2016, ADV DIFFERENTIAL EQU, V21, P109
[2]   WELL-POSEDNESS OF A FULLY COUPLED NAVIER-STOKES/Q-TENSOR SYSTEM WITH INHOMOGENEOUS BOUNDARY DATA [J].
Abels, Helmut ;
Dolzmann, Georg ;
Liu, Yuning .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :3050-3077
[3]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[4]   Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory [J].
Ball, John M. ;
Majumdar, Apala .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 :1-11
[5]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[6]   Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta ;
Wu, Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (01) :24-57
[7]   On a 3D isothermal model for nematic liquid crystals accounting for stretching terms [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (01) :69-82
[8]   EXISTENCE AND UNIQUENESS OF GLOBAL CLASSICAL SOLUTIONS OF A GRADIENT FLOW OF THE LANDAU-DE GENNES ENERGY [J].
Chen, Xinfu ;
Xu, Xiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) :1251-1263
[9]  
Dai M. M., 2014, ARXIV14097499
[10]  
de Gennes PG., 1993, The physics of liquid crystals, V2nd