Gate-Defined Electron-Hole Double Dots in Bilayer Graphene

被引:60
|
作者
Banszerus, L. [1 ,2 ,3 ]
Frohn, B. [1 ,2 ]
Epping, A. [1 ,2 ,3 ]
Neumaier, D. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [5 ]
Stampfer, C. [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, European Union, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, European Union, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI9, European Union, D-52425 Julich, Germany
[4] AMO GmbH, Gesell Angew Mikro & Optoelekt, European Union, D-52074 Aachen, Germany
[5] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
Bilayer graphene; quantum dots; electrostatic confinement; double dots; STATES;
D O I
10.1021/acs.nanolett.8b01303
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present gate-controlled single-, double-, and triple-dot operation in electrostatically gapped bilayer graphene. Thanks to the recent advancements in sample fabrication, which include the encapsulation of bilayer graphene in hexagonal boron nitride and the use of graphite gates, it has become possible to electrostatically confine carriers in bilayer graphene and to completely pinch-off current through quantum dot devices. Here, we discuss the operation and characterization of electron-hole double dots. We show a remarkable degree of control of our device, which allows the implementation of two different gate-defined electron-hole double-dot systems with very similar energy scales. In the single-dot regime, we extract excited state energies and investigate their evolution in a parallel magnetic field, which is in agreement with a Zeeman-spin-splitting expected for a g-factor of 2.
引用
收藏
页码:4785 / 4790
页数:6
相关论文
共 50 条
  • [1] Gate-Defined Electron Interferometer in Bilayer Graphene
    Iwakiri, Shuichi
    de Vries, Folkert K.
    Portoles, Elias
    Zheng, Giulia
    Taniguchi, Takashi
    Watanabe, Kenji
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2022, 22 (15) : 6292 - 6297
  • [2] Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots
    Kurzmann, Annika
    Overweg, Hiske
    Eich, Marius
    Pally, Alessia
    Rickhaus, Peter
    Pisoni, Riccardo
    Lee, Yongjin
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2019, 19 (08) : 5216 - 5221
  • [3] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [4] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [5] Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots
    Eich, Marius
    Pisoni, Riccardo
    Overweg, Hiske
    Kurzmann, Annika
    Lee, Yongjin
    Rickhaus, Peter
    Ihn, Thomas
    Ensslin, Klaus
    Herman, Frantisek
    Sigrist, Manfred
    Watanabe, Kenji
    Taniguchi, Takashi
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [6] Electron-Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots
    Banszerus, L.
    Rothstein, A.
    Fabian, T.
    Moller, S.
    Icking, E.
    Trellenkamp, S.
    Lentz, F.
    Neumaier, D.
    Watanabe, K.
    Taniguchi, T.
    Libisch, F.
    Volk, C.
    Stampfer, C.
    NANO LETTERS, 2020, 20 (10) : 7709 - 7715
  • [7] Electron Collimation in Twisted Bilayer Graphene via Gate-Defined Moire Barriers
    Ren, Wei
    Zhang, Xi
    Zhu, Ziyan
    Khan, Moosa
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Luskin, Mitchell
    Wang, Ke
    NANO LETTERS, 2024, 24 (40) : 12508 - 12514
  • [8] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    NATURE COMMUNICATIONS, 2012, 3
  • [9] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    Nature Communications, 3
  • [10] Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene
    Xie Y.-M.
    Lantagne-Hurtubise É.
    Young A.F.
    Nadj-Perge S.
    Alicea J.
    Physical Review Letters, 2023, 131 (14)