Dynamics of a stage-structured predator-prey model with prey impulsively diffusing between two patches

被引:28
作者
Jiao, Jianjun [1 ]
Chen, Lansun [2 ]
Cai, Shaohong [1 ]
Wang, Limin [3 ]
机构
[1] Guizhou Coll Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Sch Math & Stat, Guiyang 550004, Peoples R China
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[3] Dalian Jiaotong Univ, Dept Math & Phys, Dalian 116028, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey model; Impulsive diffusion; Permanent; Predator-extinction; GLOBAL STABILITY; TIME-DELAY; SYSTEM; PERTURBATIONS; PERSISTENCE; EXTINCTION; DISPERSAL; GROWTH; CHAOS;
D O I
10.1016/j.nonrwa.2009.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose a stage-structured predator-prey model, with prey impulsively diffusing between two patches. Using the discrete dynamical system determined by the stroboscopic map, we obtain a predator-extinction periodic solution. Further, the predator-extinction periodic solution is globally attractive. By the theory on the delay and impulsive differential equation, we prove that the investigated system is permanent. Our results indicate that the discrete time delay has influence to the dynamical behaviors of the investigated system. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2748 / 2756
页数:9
相关论文
共 29 条
[1]   A TIME-DELAY MODEL OF SINGLE-SPECIES GROWTH WITH STAGE STRUCTURE [J].
AIELLO, WG ;
FREEDMAN, HI .
MATHEMATICAL BIOSCIENCES, 1990, 101 (02) :139-153
[2]   PERSISTENCE AND EXTINCTION IN SINGLE-SPECIES REACTION-DIFFUSION MODELS [J].
ALLEN, LJS .
BULLETIN OF MATHEMATICAL BIOLOGY, 1983, 45 (02) :209-227
[3]  
[Anonymous], 2013, Mathematical Biology
[4]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[5]   GLOBAL STABILITY AND PERIODIC-ORBITS FOR 2-PATCH PREDATOR-PREY DIFFUSION-DELAY MODELS [J].
BERETTA, E ;
SOLIMANO, F ;
TAKEUCHI, Y .
MATHEMATICAL BIOSCIENCES, 1987, 85 (02) :153-183
[6]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[7]  
BERETTA E, 1987, B MATH BIOL, V49, P431, DOI 10.1016/S0092-8240(87)80005-8
[8]   Permanence and extinction in logistic and Lotka-Volterra systems with diffusion [J].
Cui, JA ;
Chen, LS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) :512-535
[9]  
Freedman H.I., 1989, Appl. Anal., V31, P247
[10]   GLOBAL STABILITY AND PREDATOR DYNAMICS IN A MODEL OF PREY DISPERSAL IN A PATCHY ENVIRONMENT [J].
FREEDMAN, HI ;
TAKEUCHI, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :993-1002