Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy

被引:20
作者
MacKenzie, Mark [1 ]
Chi, Haonan [2 ]
Varma, Manoj [3 ]
Pal, Parama [4 ]
Kar, Ajoy [1 ]
Paterson, Lynn [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Inst Biol Chem Biophys & Bioengn, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Indian Inst Sci, Ctr Nano Sci & Engn CeNSE, Bangalore, Karnataka, India
[4] Tata Consultancy Serv, TCS Res & Innovat, Bangalore, Karnataka, India
基金
英国工程与自然科学研究理事会;
关键词
PLASMON RESONANCE; SERS SENSORS; GOLD; NANOPARTICLES; FILMS; INTEGRATION; SEPARATION; REDUCTION; SUBSTRATE; COLLOIDS;
D O I
10.1038/s41598-019-53328-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on an optimized fabrication protocol for obtaining silver nanoparticles on fused silica substrates via laser photoreduction of a silver salt solution. We find that multiple scans of the laser over the surface leads to a more uniform coverage of densely packed silver nanoparticles of approximately 50 nm diameter on the fused silica surface. Our substrates yield Raman enhancement factors of the order of 1011 of the signal detected from crystal violet. We use a theoretical model based on scanning electron microscope (SEM) images of our substrates to explain our experimental results. We also demonstrate how our technique can be extended to embedding silver nanoparticles in buried microfluidic channels in glass. The in situ laser inscription of silver nanoparticles on a laser machined, sub-surface, microfluidic channel wall within bulk glass paves the way for developing 3D, monolithic, fused silica surface enhance Raman spectroscopy (SERS) microfluidic sensing devices.
引用
收藏
页数:13
相关论文
共 69 条
[31]   SERS-based immunoassay using a gold array-embedded gradient microfluidic chip [J].
Lee, Moonkwon ;
Lee, Kangsun ;
Kim, Ki Hyung ;
Oh, Kwang W. ;
Choo, Jaebum .
LAB ON A CHIP, 2012, 12 (19) :3720-3727
[32]   ADSORPTION AND SURFACE-ENHANCED RAMAN OF DYES ON SILVER AND GOLD SOLS [J].
LEE, PC ;
MEISEL, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (17) :3391-3395
[33]   A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride [J].
Leopold, N ;
Lendl, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (24) :5723-5727
[34]   Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection [J].
Li, Ming ;
Zhao, Fusheng ;
Zeng, Jianbo ;
Qi, Ji ;
Lu, Jing ;
Shih, Wei-Chuan .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (11)
[35]   Self-assembled metal colloid films: Two approaches for preparing new SERS active substrates [J].
Li, XL ;
Xu, WQ ;
Zhang, JH ;
Jia, HY ;
Yang, B ;
Zhao, B ;
Li, BF ;
Ozaki, Y .
LANGMUIR, 2004, 20 (04) :1298-1304
[36]   One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering [J].
Lin, Cheng-Hsiang ;
Jiang, Lan ;
Chai, Yen-Hsin ;
Xiao, Hai ;
Chen, Shean-Jen ;
Tsai, Hai-Lung .
OPTICS EXPRESS, 2009, 17 (24) :21581-21589
[37]   Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus [J].
Lin, Ying-Yi ;
Liao, Jiunn-Der ;
Ju, Yu-Hung ;
Chang, Chia-Wei ;
Shiau, Ai-Li .
NANOTECHNOLOGY, 2011, 22 (18)
[38]   Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods [J].
Link, S ;
El-Sayed, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (40) :8410-8426
[39]   Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics [J].
Liu, GL ;
Lee, LP .
APPLIED PHYSICS LETTERS, 2005, 87 (07)
[40]  
Mikac L., 2015, 38 INT CONV INF COMM