Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy

被引:19
作者
MacKenzie, Mark [1 ]
Chi, Haonan [2 ]
Varma, Manoj [3 ]
Pal, Parama [4 ]
Kar, Ajoy [1 ]
Paterson, Lynn [2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Photon & Quantum Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Inst Biol Chem Biophys & Bioengn, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Indian Inst Sci, Ctr Nano Sci & Engn CeNSE, Bangalore, Karnataka, India
[4] Tata Consultancy Serv, TCS Res & Innovat, Bangalore, Karnataka, India
基金
英国工程与自然科学研究理事会;
关键词
PLASMON RESONANCE; SERS SENSORS; GOLD; NANOPARTICLES; FILMS; INTEGRATION; SEPARATION; REDUCTION; SUBSTRATE; COLLOIDS;
D O I
10.1038/s41598-019-53328-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on an optimized fabrication protocol for obtaining silver nanoparticles on fused silica substrates via laser photoreduction of a silver salt solution. We find that multiple scans of the laser over the surface leads to a more uniform coverage of densely packed silver nanoparticles of approximately 50 nm diameter on the fused silica surface. Our substrates yield Raman enhancement factors of the order of 1011 of the signal detected from crystal violet. We use a theoretical model based on scanning electron microscope (SEM) images of our substrates to explain our experimental results. We also demonstrate how our technique can be extended to embedding silver nanoparticles in buried microfluidic channels in glass. The in situ laser inscription of silver nanoparticles on a laser machined, sub-surface, microfluidic channel wall within bulk glass paves the way for developing 3D, monolithic, fused silica surface enhance Raman spectroscopy (SERS) microfluidic sensing devices.
引用
收藏
页数:13
相关论文
共 69 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]  
Atanasov P. A., 2018, APPL SPECTROSCOPY, V73
[3]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[4]   Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips [J].
Chattopadhyay, S ;
Lo, HC ;
Hsu, CH ;
Chen, LC ;
Chen, KH .
CHEMISTRY OF MATERIALS, 2005, 17 (03) :553-559
[5]   A 3D mammalian cell separator biochip [J].
Choudhury, Debaditya ;
Ramsay, William T. ;
Kiss, Robert ;
Willoughby, Nicholas A. ;
Paterson, Lynn ;
Kar, Ajoy K. .
LAB ON A CHIP, 2012, 12 (05) :948-953
[6]   A Simple Laser Ablation-Assisted Method for Fabrication of Superhydrophobic SERS Substrate on Teflon Film [J].
Chu, Fangjia ;
Yan, Sheng ;
Zheng, Jiangen ;
Zhang, Lingjun ;
Zhang, Haiyan ;
Yu, Keke ;
Sun, Xiaonan ;
Liu, Anping ;
Huang, Yingzhou .
NANOSCALE RESEARCH LETTERS, 2018, 13
[7]   Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices [J].
Connatser, R. Maggie ;
Cochran, Malcolm ;
Harrison, Robert J. ;
Sepaniak, Michael J. .
ELECTROPHORESIS, 2008, 29 (07) :1441-1450
[8]  
Dar N., 2011, 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO), P297, DOI 10.1109/NANO.2011.6144370
[9]   Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template [J].
Das, G. ;
Patra, N. ;
Gopalakrishanan, A. ;
Zaccaria, R. Proietti ;
Toma, A. ;
Thorat, S. ;
Di Fabrizio, E. ;
Diaspro, A. ;
Salerno, M. .
MICROELECTRONIC ENGINEERING, 2012, 97 :383-386
[10]   An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity [J].
Deng, Ming-Jay ;
Huang, Fu-Lu ;
Sun, I-Wen ;
Tsai, Wen-Ta ;
Chang, Jeng-Kuei .
NANOTECHNOLOGY, 2009, 20 (17)