Asymmetric solidification during droplet freezing in the presence of a neighboring droplet

被引:17
作者
Castillo, Julian E. [1 ]
Huang, Yanbo [2 ]
Pan, Zhenhai [2 ]
Weibel, Justin A. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
关键词
Droplet freezing; Infrared thermography; Water vapor distribution; Recalescence; Solidification; SUPERCOOLED WATER; ICE; CONDENSATION; SUPPRESSION; SIMULATION; SURFACE; STATE;
D O I
10.1016/j.ijheatmasstransfer.2021.121134
中图分类号
O414.1 [热力学];
学科分类号
摘要
A supercooled liquid droplet that freezes on a cold substrate interacts with the local surroundings through heat and mass exchange. Heat loss occurs to the substrate via conduction and at the droplet interface via evaporative cooling, diffusion, and convection. In a group of many droplets, these interactions are believed to be responsible for inter-droplet frost propagation and the evaporation of supercooled neighboring droplets. Furthermore, interactions between a standalone freezing droplet and its surroundings can lead to the formation of condensation halos and asymmetric solidification induced by external flows. This paper investigates droplet-to-droplet interactions via heat and mass exchange between a freezing droplet and a neighboring droplet, for which asymmetries are observed in the final shape of the frozen droplet. Side-view infrared (IR) thermography measurements of the surface temperature for a pair of freezing droplets, along with three-dimensional numerical simulations of the solidification process, are used to quantify the intensity and nature of these interactions. Two droplet-to-droplet interaction mechanisms causing asymmetric freezing are identified: (1) non-uniform evaporative cooling on the surface of the freezing droplet caused by vapor starvation in the air between the droplets; and (2) a non-uniform thermal resistance at the contact area of the freezing droplet caused by the heat conduction within the neighboring droplet. The combined experimental and numerical results show that the size of the freezing droplet relative to its neighbor can significantly impact the intensity of the interaction between the droplets and, therefore, the degree of asymmetry. A small droplet freezing in the presence of a large droplet, which blocks vapor from freely diffusing to the surface of the small droplet, causes substantial asymmetry in the solidification process. The droplet-to-droplet interactions investigated in this paper provide insights into the role of latent heat dissipation during condensation frosting. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Review of defrosting methods [J].
Amer, Mohammed ;
Wang, Chi-Chuan .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 :53-74
[2]  
Andrey J., 1990, CLIMATOLOGICAL B, V24, P66
[3]  
ANSYS Inc, 2019, ANSYS FLUENT 19 4 US
[4]   Controlling condensation and frost growth with chemical micropatterns [J].
Boreyko, Jonathan B. ;
Hansen, Ryan R. ;
Murphy, Kevin R. ;
Nath, Saurabh ;
Retterer, Scott T. ;
Collier, C. Patrick .
SCIENTIFIC REPORTS, 2016, 6
[5]   Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Collier, C. Patrick .
ACS NANO, 2013, 7 (02) :1618-1627
[6]   Aircraft flight characteristics in icing conditions [J].
Cao, Yihua ;
Wu, Zhenlong ;
Su, Yuan ;
Xu, Zhongda .
PROGRESS IN AEROSPACE SCIENCES, 2015, 74 :62-80
[7]   Quantifying the Pathways of Latent Heat Dissipation during Droplet Freezing on Cooled Substrates [J].
Castillo, Julian E. ;
Huang, Yanbo ;
Pan, Zhenhai ;
Weibel, Justin A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 164
[8]   Freezing of water droplets on solid surfaces: An experimental and numerical study [J].
Chaudhary, Gaurav ;
Li, Ri .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 57 :86-93
[9]   Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation [J].
Chavan, Shreyas ;
Park, Deokgeun ;
Singla, Nitish ;
Sokalski, Peter ;
Boyina, Kalyan ;
Miljkovic, Nenad .
LANGMUIR, 2018, 34 (22) :6636-6644
[10]   Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion [J].
Chen, Xuemei ;
Ma, Ruiyuan ;
Zhou, Hongbo ;
Zhou, Xiaofeng ;
Che, Lufeng ;
Yao, Shuhuai ;
Wang, Zuankai .
SCIENTIFIC REPORTS, 2013, 3