Electric-field control of strain-mediated magnetoelectric random access memory

被引:87
作者
Hu, Jia-Mian [1 ]
Li, Zheng [1 ]
Wang, Jing [1 ]
Nan, C. W. [1 ]
机构
[1] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
MAGNETIC TUNNEL-JUNCTIONS; TECHNOLOGY; ANISOTROPY; COBALT; FILMS;
D O I
10.1063/1.3373593
中图分类号
O59 [应用物理学];
学科分类号
摘要
A strain-mediated magnetoelectric random access memory with electric-field-writing is presented, which consists of a magnetic tunnel junction (MTJ) in intimate contact with a ferroelectric (FE) layer. The calculations show that the magnetization vector in the free layer of the MTJ unit can switch in-plane by 90 S upon applying an appropriate electric field to the FE layer, as compared to the common 180 S reversal induced by magnetic field or spin-current. A perfect interface between the FE layer and the MTJ is assumed. The free layers used for illustration include either (001)-oriented or polycrystalline magnetic films of Fe-Co alloy, CoFe(2)O(4) (CFO), Ni, and Fe(3)O(4). Among them, the (001)-oriented FeCo and CFO films with positive magnetocrystalline anisotropy constant (i.e., K(1)>0) show an abrupt magnetization switching, while a gradual magnetization switching takes place in the (001)-oriented Ni and Fe(3)O(4) films with K(1)<0 as well as the polycrystalline films. Such electric-field-induced in-plane magnetization switching can result in a remarkable change in the MTJ's electric resistance. In particular, hysteretic dependence of the device resistance on the applied electric field is obtained for the cases of the (001)-oriented FeCo and CFO free layers that exhibit the abrupt magnetization switching, whereby a nonvolatile information storage process can be achieved. The influence of the shape of the free layer on both magnetization and resistance switching features is discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3373593]
引用
收藏
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2000, Modern Magnetic Materials: Principles and Applications
[2]   Multiferroics:: Towards a magnetoelectric memory [J].
Bibes, Manuel ;
Barthelemy, Agnes .
NATURE MATERIALS, 2008, 7 (06) :425-426
[3]   Magnetoelectric switching of exchange bias [J].
Borisov, P ;
Hochstrat, A ;
Chen, X ;
Kleemann, W ;
Binek, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[4]   In situ manipulation of magnetic anisotropy in magnetite thin films [J].
Brandlmaier, A. ;
Gepraegs, S. ;
Weiler, M. ;
Boger, A. ;
Opel, M. ;
Huebl, H. ;
Bihler, C. ;
Brandt, M. S. ;
Botters, B. ;
Grundler, D. ;
Gross, R. ;
Goennenwein, S. T. B. .
PHYSICAL REVIEW B, 2008, 77 (10)
[5]   Magnetoelectric exchange bias systems in spintronics [J].
Chen, Xi ;
Hochstrat, Andreas ;
Borisov, Pavel ;
Kleemann, Wolfgang .
APPLIED PHYSICS LETTERS, 2006, 89 (20)
[6]   Electric-field control of local ferromagnetism using a magnetoelectric multiferroic [J].
Chu, Ying-Hao ;
Martin, Lane W. ;
Holcomb, Mikel B. ;
Gajek, Martin ;
Han, Shu-Jen ;
He, Qing ;
Balke, Nina ;
Yang, Chan-Ho ;
Lee, Donkoun ;
Hu, Wei ;
Zhan, Qian ;
Yang, Pei-Ling ;
Fraile-Rodriguez, Arantxa ;
Scholl, Andreas ;
Wang, Shan X. ;
Ramesh, R. .
NATURE MATERIALS, 2008, 7 (06) :478-482
[7]  
Cullity D., 2009, Introduction to Magnetic Materials, V2nd
[8]   Multiferroic and magnetoelectric materials [J].
Eerenstein, W. ;
Mathur, N. D. ;
Scott, J. F. .
NATURE, 2006, 442 (7104) :759-765
[9]   Switching characteristics and magnetization vortices of thin-film cobalt in nanometer-scale patterned arrays [J].
Girgis, E ;
Schelten, J ;
Shi, J ;
Janesky, J ;
Tehrani, S ;
Goronkin, H .
APPLIED PHYSICS LETTERS, 2000, 76 (25) :3780-3782
[10]   Ferroelectric ceramics: History and technology [J].
Haertling, GH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (04) :797-818