Real-time Arabic Sign Language Recognition based on YOLOv5

被引:1
|
作者
Aiouez, Sabrina [1 ]
Hamitouche, Anis [2 ]
Belmadoui, Mohamed Sabri [2 ]
Belattar, Khadidja [3 ]
Souami, Feryel [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene, Comp Sci Dept, Algiers 16000, Algeria
[2] Univ Algiers 1 Benyoucef Benkhedda, Comp Sci Dept, Algiers 16000, Algeria
[3] Constantine 2 Univ, Dept Fundamental Comp Sci & Their Applicat, Constantine 25000, Algeria
关键词
Deep Learning; Real-time Detection; Arabic Sign Langage; YOLOv5; Faster R-CNN; Hand Gesture;
D O I
10.5220/0010979300003209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sign language is the most common communication mode of deaf and mute community. However, hearing people do not generally know this language. So, an automatic sign langage recognition is required to facilitate and better understand interactions with such people. However, one of the main challlenges in this field is the real-time sign recognition. That is why. deep learning-based object detection models can be used to improve the recognition performance (in terms of time and accuracy). In this paper, we present a real-time system that allows the detection and recognition of hand postures intended for the Arabic sign language alphabet. To do so, we constructed a dataset of 28 Arabic signs containing around 15,000 images acquired with different sizes of hands, lighting conditions, backgrounds and with/without accessories. We then trained and tested different variants of YOLOv5 on the constructed dataset. The conducted experiments on our ArSL real-time recognition system show that the adapted YOLOv5 is more effective than Faster R-CNN detector.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [21] Real-time sign language recognition based on video stream
    Zhao K.
    Zhang K.
    Zhai Y.
    Wang D.
    Su J.
    International Journal of Systems, Control and Communications, 2021, 12 (02) : 158 - 174
  • [22] Real-Time Isolated Sign Language Recognition
    Hori, Noriaki
    Yamamoto, Masahito
    FRONTIERS OF ARTIFICIAL INTELLIGENCE, ETHICS, AND MULTIDISCIPLINARY APPLICATIONS, FAIEMA 2023, 2024, : 445 - 458
  • [23] Real-Time Sign Language Recognition System
    Sen, Sanjukta
    Narang, Shreya
    Gouthaman, P.
    2023 ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES FOR HIGH PERFORMANCE APPLICATIONS, ACCTHPA, 2023,
  • [24] Real-Time Mexican Sign Language Recognition
    Obdulia Sosa-Jimenez, Candy
    Vladimir Rios-Figueroa, Homero
    Janet Rechy-Ramirez, Ericka
    Marin-Hernandez, Antonio
    Solis Gonzalez-Cosio, Ana Luisa
    2017 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2017,
  • [25] Real-Time Recognition of Indian Sign Language
    Mariappan, Muthu H.
    Gomathi, V
    2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019), 2019,
  • [26] A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5
    Yang, Jie
    Sun, Ting
    Zhu, Wenchao
    Li, Zonghao
    IEEE ACCESS, 2023, 11 : 115998 - 116010
  • [27] Research on Real-Time Forestry Pest Detection Based on Improved YOLOv5
    Yu, Jipeng
    Tan, Taizhe
    Deng, Yaoyu
    ADVANCES IN COMPUTER GRAPHICS, CGI 2022, 2022, 13443 : 515 - 526
  • [28] An Attention Based YOLOv5 Network for Small Traffic Sign Recognition
    Chen, Yi
    Wang, Junfan
    Dong, Zhekang
    Yang, Yuxiang
    Luo, Qiang
    Gao, Mingyu
    2022 IEEE 31ST INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2022, : 1158 - 1164
  • [29] A Novel Lightweight Traffic Sign Recognition Model Based on YOLOv5
    Li, Wenju
    Zhang, Gan
    Cui, Liu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (05)
  • [30] A Real-Time Fish Target Detection Algorithm Based on Improved YOLOv5
    Li, Wanghua
    Zhang, Zhenkai
    Jin, Biao
    Yu, Wangyang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)