Disruption-induced poloidal currents in the tokamak wall

被引:22
作者
Pustovitov, V. D. [1 ,2 ]
机构
[1] Kurchatov Inst, Natl Res Ctr, Pl Kurchatova 1, Moscow 123182, Russia
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
关键词
Tokamak; Disruption; Disruption mitigation; Thermal quench; Current quench; Flux conserving events; ITER VACUUM VESSEL; PLASMA-EQUILIBRIUM; MAGNETIC-FIELD; RESISTIVE WALL; BETA; SIMULATION; STABILITY; TRANSPORT; PHYSICS; DESIGN;
D O I
10.1016/j.fusengdes.2017.02.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Global computational models for analysis of electromagnetic transients to support ITER tokamak design and optimization
    Amoskov, V.
    Arslanova, D.
    Belov, A.
    Belyakov, V.
    Belyakova, T.
    Gapionok, E.
    Krylova, N.
    Kukhtin, V.
    Lamzin, E.
    Maximenkova, N.
    Mazul, I.
    Rozov, V.
    Sytchevsky, S.
    [J]. FUSION ENGINEERING AND DESIGN, 2012, 87 (09) : 1519 - 1532
  • [2] Specification of asymmetric VDE loads of the ITER tokamak
    Bachmann, C.
    Sugihara, M.
    Roccella, R.
    Sannazzaro, G.
    Gribov, Y.
    Riccardo, V.
    Hender, T. C.
    Gerasimov, S. N.
    Pautasso, G.
    Belov, A.
    Lamzin, E.
    Roccella, M.
    [J]. FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 1915 - 1919
  • [3] Bandyopadhyay I., 2010, P 23 IAEA FUS EN C D
  • [4] Barabaschi P., 1993, P PLASM CONTR TECHN
  • [5] BATEMAN G, 1979, PHYS FLUIDS, V22, P354, DOI 10.1063/1.862563
  • [6] Belyakov V., 1996, P 19 S FUS TECHN LIS, V1, P821
  • [7] Diamagnetic double-loop method for a highly sensitive measurement of energy stored in a Stellarator plasma
    Besshou, S
    Aizawa, K
    Tomiyama, K
    Kondo, K
    Mizuuchi, T
    Nagasaki, K
    Obiki, T
    Okada, H
    Sano, F
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (10) : 3859 - 3863
  • [8] Physics and control of resistive wall modes
    Bondeson, A
    Liu, YQ
    Gregoratto, D
    Fransson, CM
    Lennartson, B
    Breitholtz, C
    Gribov, Y
    Pustovitov, VD
    [J]. PHYSICS OF PLASMAS, 2002, 9 (05) : 2044 - 2050
  • [9] Preface to Special Topic: ITER
    Campbell, David J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (02)
  • [10] Croatinger J A, 1997, UCRLID126284 LAWR LI