An in-situ, high-energy X-ray diffraction study of the thermal stability of delithiated LiVPO4F

被引:17
作者
Piao, Ying [1 ,2 ]
Lin, Chi-kai [2 ]
Qin, Yan [2 ]
Zhou, Dehua [2 ]
Ren, Yang [3 ]
Bloom, Ira [2 ]
Wei, Yingjin [1 ]
Chen, Gang [1 ]
Chen, Zonghai [2 ]
机构
[1] Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Xray Sci Div, Adv Photon Sources, Argonne, IL 60439 USA
关键词
Lithium-ion battery; Thermal stability; High-energy X-ray diffraction; Differential scanning calorimetry; LITHIUM VANADIUM FLUOROPHOSPHATE; LI-ION CELLS; METAL; PHOSPHATES; BATTERIES; SAFETY;
D O I
10.1016/j.jpowsour.2013.11.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Differential scanning calorimetry (DSC) and in-situ high-energy X-ray diffraction (HEXRD) techniques were used to investigate the high-temperature reactions of a cathode containing Li1-xVPO4F with materials found in a lithium-ion cell, such as graphite additive in the cathode and the electrolyte. The DSC results indicate that the energy released during the reaction of the cathode containing Li1-xVPO4F with the electrolyte was about 1/3 of that released during a similar reaction of the delithiated, layered cathode containing Li-1.1[Ni1/3Mn1/3Co1/3](0.9)O-2. The in-situ HEXRD results provide evidence that the delithiated material, Li1-xVPO4F, reacts with protons and/or lithium ions found in the reaction mixture at elevated temperature, producing an LiVPO4F-like compound. This reaction is the most likely cause for the low energy release during heating, that is, the LiVPO4F-like material appears to be thermally stable at temperatures up to 400 degrees C in the presence of LiPF6. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1250 / 1255
页数:6
相关论文
共 19 条
[1]   Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F [J].
Barker, J ;
Gover, RKB ;
Burns, P ;
Bryan, A ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :516-520
[2]   Performance evaluation of lithium vanadium fluorophosphate in lithium metal and lithium-ion cells [J].
Barker, J ;
Gover, RKB ;
Burns, P ;
Bryan, A ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (09) :A1776-A1779
[3]   On safety of lithium-ion cells [J].
Biensan, P ;
Simon, B ;
Pérès, JP ;
de Guibert, A ;
Broussely, M ;
Bodet, JM ;
Perton, F .
JOURNAL OF POWER SOURCES, 1999, 81 :906-912
[4]   Study of Thermal Decomposition of Li1-x(Ni1/3Mn1/3Co1/3)0.9O2 Using In-Situ High-Energy X-Ray Diffraction [J].
Chen, Zonghai ;
Ren, Yang ;
Lee, Eungje ;
Johnson, Christopher ;
Qin, Yan ;
Amine, Khalil .
ADVANCED ENERGY MATERIALS, 2013, 3 (06) :729-736
[5]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[6]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[7]   Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure [J].
Ellis, Brian L. ;
Ramesh, T. N. ;
Davis, Linda J. M. ;
Goward, Gillian R. ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2011, 23 (23) :5138-5148
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]   LiVPO4F:: A new active material for safe lithium-ion batteries [J].
Gover, R. K. B. ;
Burns, P. ;
Bryan, A. ;
Saidi, M. Y. ;
Swoyer, J. L. ;
Barker, J. .
SOLID STATE IONICS, 2006, 177 (26-32) :2635-2638
[10]   Lithium metal phosphates, power and automotive applications [J].
Huang, H. ;
Faulkner, T. ;
Barker, J. ;
Saidi, M. Y. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :748-751