Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging

被引:41
作者
Dong, Xia
Wei, Chang
Lu, Li
Liu, Tianjun
Lv, Feng
机构
[1] Chinese Acad Med Sci, Inst Biomed Engn, Tianjin Key Lab Biomed Mat, Tianjin 300192, Peoples R China
[2] Peking Union Med Coll, Tianjin 300192, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2016年 / 61卷
基金
中国国家自然科学基金;
关键词
Thermosensitive nanogels; Porphyrin; Fluorescence imaging; Hepatoma tumor; IN-VIVO; DRUG-DELIVERY; POLYMER; NANOCARRIERS; HYDROGELS; DESIGN; VITRO;
D O I
10.1016/j.msec.2015.12.037
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Four-arm PEG-PCL copolymer with porphyrin core (POR-PEG-PCL) exhibits beneficial fluorescence ability in vivo. To further develop an application of thermosensitive porphyrin hydrogel based on four-arm PEG-PCL copolymer as a drug carrier, a POR-PEG-PCL nanogel was tracked and located to tumor tissue with porphyrin as a fluorescence tag via intravenous injection. The structure and function of the nanogel were evaluated by TEM, DLS, H-NMR, UV-vis and fluorescence spectra. The fluorescent nanogel was monitored by an in vivo imaging system with hepatoma tumor-bearing mice. Good biocompatibility and safety in vitro and in vivo show that the POR-PEG-PCL nanogel is a potential drug carrier that targets tumor tissues with fluorescence bioimaging. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 32 条
[1]   Imaging challenges in biomaterials and tissue engineering [J].
Appel, Alyssa A. ;
Anastasio, Mark A. ;
Larson, Jeffery C. ;
Brey, Eric M. .
BIOMATERIALS, 2013, 34 (28) :6615-6630
[2]  
Calderon M., 2011, SOFT MATTER, V7, P11259
[3]   5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials [J].
Costa, Joana I. T. ;
Tome, Augusto C. ;
Neves, Maria G. P. M. S. ;
Cavaleiro, Jose A. S. .
JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2011, 15 (11-12) :1116-1133
[4]   Hydrogel-based devices for biomedical applications [J].
Deligkaris, Kosmas ;
Tadele, Tadele Shiferaw ;
Olthuis, Wouter ;
van den Berg, Albert .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02) :765-774
[5]   In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats [J].
Fischerauer, S. F. ;
Kraus, T. ;
Wu, X. ;
Tangl, S. ;
Sorantin, E. ;
Haenzi, A. C. ;
Loeffler, J. F. ;
Uggowitzer, P. J. ;
Weinberg, A. M. .
ACTA BIOMATERIALIA, 2013, 9 (02) :5411-5420
[6]   Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications [J].
Fleige, Emanuel ;
Quadir, Mohiuddin A. ;
Haag, Rainer .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (09) :866-884
[7]   Near-Infrared Fluorescent Silica/Porphyrin Hybrid Nanorings for In Vivo Cancer Imaging [J].
Hayashi, Koichiro ;
Nakamura, Michihiro ;
Miki, Hirokazu ;
Ozaki, Shuji ;
Abe, Masahiro ;
Matsumoto, Toshio ;
Ishimura, Kazunori .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (17) :3539-3546
[8]   Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy [J].
Jin, Hua ;
Dai, Xiao-Hui ;
Wu, Chuan ;
Pan, Jian-Ming ;
Wang, Xiao-Hong ;
Yan, Yong-Sheng ;
Liu, Dong-Ming ;
Sun, Lin .
EUROPEAN POLYMER JOURNAL, 2015, 66 :149-159
[9]   Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications [J].
Li, Yulin ;
Rodrigues, Joao ;
Tomas, Helena .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2193-2221
[10]   Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy [J].
Liang, Xiaolong ;
Li, Xiaoda ;
Jing, Lijia ;
Yue, Xiuli ;
Dai, Zhifei .
BIOMATERIALS, 2014, 35 (24) :6379-6388