Solvability of discrete Neumann bo undary value problems

被引:18
作者
Anderson, D. R.
Rachunkova, I.
Tisdell, C. C. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Palacky Univ, Dept Math, Olomouc 77146, Czech Republic
[3] Concordia Coll, Dept Math & Comp Sci, Moorhead, MN 56562 USA
基金
澳大利亚研究理事会;
关键词
discrete Neumann boundary value problem; existence of solutions; Schaefer's theorem; difference equation;
D O I
10.1016/j.jmaa.2006.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer's Theorem in the finite-dimensional space setting. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:736 / 741
页数:6
相关论文
共 17 条
[1]   ON MULTIPOINT BOUNDARY-VALUE-PROBLEMS FOR DISCRETE EQUATIONS [J].
AGARWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 96 (02) :520-534
[2]  
[Anonymous], 1978, DEGREE THEORY
[3]   DIFFERENCE EQUATIONS ASSOCIATED WITH BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS [J].
GAINES, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (02) :411-434
[4]   Existence of multiple solutions for second-order discrete boundary value problems [J].
Henderson, J ;
Thompson, HB .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (10-11) :1239-1248
[5]   Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations [J].
Henderson, J ;
Thompson, HB .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (02) :297-321
[6]  
Kelley WG, 2001, DIFFERENCE EQUATIONS
[7]  
Lasota A., 1968, Ann. Pol. Math, V20, P183, DOI [10.4064/ap-20-2-183-190, DOI 10.4064/AP-20-2-183-190]
[8]  
MAWHIN J, 2003, NONLINEAR ANAL APPL, V2, P789
[9]  
MAWHIN J, 2003, NONLINEAR ANAL APPL, V1, P789
[10]  
Rachnkova I., 2006, AUST J MATH ANAL APP, V3, P6