Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality

被引:90
作者
Zhang, Tonghua [1 ,2 ]
Xing, Yepeng [1 ]
Zang, Hong [3 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
[3] Wuhan Inst Technol, Hubei Key Lab Intelligent Robot, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Turing instability; Pattern formation; Predator-prey model; Control of patterns; PATTERN-FORMATION; TURING PATTERNS; DROSOPHILA; WAVE;
D O I
10.1007/s11071-014-1438-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We investigate the effects of diffusion on the spatial dynamics of a predator-prey model with hyperbolic mortality in predator population. More precisely, we aim to study the formation of some elementary two-dimensional patterns such as hexagonal spots and stripe patterns. Based on the linear stability analysis, we first identify the region of parameters in which Turing instability occurs. When control parameter is in the Turing space, we analyse the existence of stable patterns for the excited model by the amplitude equations. Then, for control parameter away from the Turing space, we numerically investigate the initial value-controlled patterns. Our results will enrich the pattern dynamics in predator-prey models and provide a deep insight into the dynamics of predator-prey interactions.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 39 条
[1]   Modeling herd behavior in population systems [J].
Ajraldi, Valerio ;
Pittavino, Marta ;
Venturino, Ezio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2319-2338
[2]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[3]   Envelope Quasisolitons in Dissipative Systems with Cross-Diffusion [J].
Biktashev, V. N. ;
Tsyganov, M. A. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[4]  
Bouguima SM, 2012, J APPL ANAL COMPUT, V2, P351
[5]   Predator-prey dynamics with square root functional responses [J].
Braza, Peter A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) :1837-1843
[6]   Plankton patchiness and its effect on larger-scale productivity [J].
Brentnall, SJ ;
Richards, KJ ;
Brindley, J ;
Murphy, E .
JOURNAL OF PLANKTON RESEARCH, 2003, 25 (02) :121-140
[7]   DEFECTS IN ROLL-HEXAGON COMPETITION [J].
CILIBERTO, S ;
COULLET, P ;
LEGA, J ;
PAMPALONI, E ;
PEREZGARCIA, C .
PHYSICAL REVIEW LETTERS, 1990, 65 (19) :2370-2373
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]   Dynamics of Turing pattern monolayers close to onset [J].
Dufiet, V ;
Boissonade, J .
PHYSICAL REVIEW E, 1996, 53 (05) :4883-4892
[10]  
Freedman HI., 1980, DETERMINISTIC MATH M