Co-operative corrosion phenomena

被引:42
|
作者
Hughes, A. [1 ]
Muster, T. H. [1 ]
Boag, A. [2 ]
Glenn, A. M. [3 ]
Luo, C. [4 ]
Zhou, X. [4 ]
Thompson, G. E. [4 ]
McCulloch, D. [2 ]
机构
[1] Commonwealth Sci & Ind Res Org, Div Mfg & Mat Technol, Clayton, Vic 3169, Australia
[2] RMIT Univ, Dept Appl Phys, Melbourne, Vic, Australia
[3] CSIRO Div Minerals, Clayton, Vic 3169, Australia
[4] Univ Manchester, Sch Mat, Ctr Corros & Protect, Manchester M60 1QD, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Aluminium alloy; Intermetallics; Intermetallic clustering; Pitting corrosion; Stable pitting; LASER-SCANNING MICROSCOPY; LOCALIZED CORROSION; ALUMINUM-ALLOY; PARTICLES; METROLOGY;
D O I
10.1016/j.corsci.2009.10.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The corrosion of aluminium alloy 2024-T3 (AA2024-T3) was studied as a function of immersion time from 2.5 to 120 min in 0.1 M aqueous NaCl solution. At immersion times as short as 5 min, rings of corrosion product of 100 to 200 mu m diameter, containing smaller domes of corrosion product, were observed using SEM. The domes of corrosion product had greater chloride concentrations than elsewhere on the surface and represented sites of anodic attack. As the immersion time was increased, significant grain boundary attack was observed within the rings of corrosion product. Analyses of Particle Induced Xray Emission (PIXE) maps of the corroded surfaces showed a significantly higher number of IM particles around the chloride attack sites than the average particle density for the maps, indicating clustering of IM particles. These results suggest a co-operative corrosion effect as a result of clustering of the IM particles. A mechanism for the generation of the corrosion rings is discussed. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 668
页数:4
相关论文
共 50 条
  • [1] Corrosion of AA2024-T3 Part II Co-operative corrosion
    Hughes, A. E.
    Boag, A.
    Glenn, A. M.
    McCulloch, D.
    Muster, T. H.
    Ryan, C.
    Luo, C.
    Zhou, X.
    Thompson, G. E.
    CORROSION SCIENCE, 2011, 53 (01) : 27 - 39
  • [2] Contribution of cellular automata to the understanding of corrosion phenomena
    Zenkri, M.
    di Caprio, D.
    Perez-Brokate, C.
    Feron, D.
    de lamare, J.
    Chausse, A.
    Larbi, F. Ben Cheikh
    Raouafi, F.
    CONDENSED MATTER PHYSICS, 2017, 20 (03)
  • [3] The use of the electrochemical micro-cell for the investigation of corrosion phenomena
    Andreatta, F.
    Fedrizzi, L.
    ELECTROCHIMICA ACTA, 2016, 203 : 337 - 349
  • [4] In situ ESEM investigation of the initial stages of corrosion phenomena on zinc and magnesium surfaces
    Rossi, S.
    Fedel, M.
    Deflorian, F.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2014, 65 (05): : 466 - 475
  • [5] Cellular automata approach to corrosion and passivity phenomena
    Bartosik, Lukasz
    di Caprio, Dung
    Stafiej, Janusz
    PURE AND APPLIED CHEMISTRY, 2013, 85 (01) : 247 - 256
  • [6] Nonequilibrium collective phenomena in the onset of pitting corrosion
    Mikhailov, A. S.
    Scully, J. R.
    Hudson, J. L.
    SURFACE SCIENCE, 2009, 603 (10-12) : 1912 - 1921
  • [7] Simulation of Corrosion Phenomena in Automotive Components: A Case Study
    Ferrarotti, Annalisa
    Ghiggini, Elisa Vittoria
    Rocca, Riccardo
    Dotoli, Matteo
    Scaglione, Federico
    Errigo, Claudio
    Marchiaro, Giancarlo
    Baricco, Marcello
    MATERIALS, 2023, 16 (15)
  • [8] The investigation of corrosion phenomena with high throughput methods: a review
    Taylor, S. Ray
    CORROSION REVIEWS, 2011, 29 (3-4) : 135 - 151
  • [9] Electrochemical response of copper during pitting corrosion phenomena in chloride solutions
    Garcia, E
    Uruchurtu, J
    Genesca, J
    REVISTA DE METALURGIA, 1995, 31 (06) : 361 - 367
  • [10] A theoretical study of AC-induced corrosion considering diffusion phenomena
    Bosch, RW
    Bogaerts, WF
    CORROSION SCIENCE, 1998, 40 (2-3) : 323 - 336