Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems

被引:2
作者
Boudjerada, Rachida [1 ]
El Hajj, Ahmad [2 ]
Oussaily, Aya [2 ]
机构
[1] USTHB, Fac Math, Lab AMNEDP, BP32 El Alia, Bab Ezzouar, Alger, Algeria
[2] Univ Technol Compiegne, Sorbonne Univ, LMAC, F-60205 Compiegne, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2021年 / 55卷
关键词
Implicit upwind scheme; diagonal non-conservative hyperbolic systems; transport systems; discrete gradient estimates; monotone discrete solutions; Lipschitz discrete solutions;
D O I
10.1051/m2an/2020049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider diagonal non-conservative hyperbolic systems in one space dimension with monotone and large Lipschitz continuous data. Under a certain nonnegativity condition on the Jacobian matrix of the velocity of the system, global existence and uniqueness results of a Lipschitz solution for this system, which is not necessarily strictly hyperbolic, was proved in El Hajj and Monneau (J. Hyperbolic Differ. Equ. 10 (2013) 461-494). We propose a natural implicit scheme satisfiying a similar Lipschitz estimate at the discrete level. This property allows us to prove the convergence of the scheme without assuming it strictly hyperbolic.
引用
收藏
页码:S573 / S591
页数:19
相关论文
共 20 条