STABILITY AND HOLDER REGULARITY OF SOLUTIONS TO COMPLEX MONGE-AMPERE EQUATIONS ON COMPACT HERMITIAN MANIFOLDS

被引:0
作者
Lu, Chinh H. [1 ]
Trong-Thuc Phung [2 ]
To, Tat-Dat [3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Ho Chi Minh City Univ Technol, VNU HCM, Ho Chi Minh City, Vietnam
[3] Univ Toulouse, Ecole Natl Aviat Civile, 7 Ave Edouard Belin, FR-31055 Toulouse 04, France
[4] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, France
关键词
Hermitian manifold; Complex Monge-Ampere equation; Stability; Comparison principle; ENVELOPES; CURRENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, omega) be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in L-p, p > 1. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case by Demailly-Dinew-Guedj-Kolodziej-Pham-Zeriahi. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.
引用
收藏
页码:2019 / 2045
页数:28
相关论文
共 50 条
[31]   Stability of radial symmetry for a Monge-Ampere overdetermined problem [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (03) :445-453
[32]   The complex Monge-Ampere equation with infinite boundary value [J].
Xiang, Ni ;
Yang, Xiao-Ping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) :1075-1081
[33]   The Complex Monge-Ampere Operator on Bounded Domains in Cn [J].
Le Mau Hai ;
Nguyen Van Khue ;
Pham Hoang Hiep .
RESULTS IN MATHEMATICS, 2009, 54 (3-4) :309-328
[34]   Moser-Trudinger inequalities and complex Monge-Ampere equation [J].
Dinh, Tien-Cuong ;
Marinescu, George ;
Vu, Duc-Viet .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) :927-954
[35]   The C2,α Estimate of Complex Monge-Ampere Equation [J].
Dinew, Slawomir ;
Zhang, Xi ;
Zhang, Xiangwen .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) :1713-1722
[36]   Reflection Principle for the Complex Monge-Ampere Equation and Plurisubharmonic Functions [J].
Koskenoja, Mika .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
[37]   Stability of isoperimetric type inequalities for some Monge-Ampere functionals [J].
Ghilli, Daria ;
Salani, Paolo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) :643-661
[38]   Moser-Trudinger inequality for the complex Monge-Ampere equation [J].
Wang, Jiaxiang ;
Wang, Xu-jia ;
Zhou, Bin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (12)
[39]   A Remark on the Continuous Subsolution Problem for the Complex Monge-Ampere Equation [J].
Kolodziej, Slawomir ;
Nguyen, Ngoc Cuong .
ACTA MATHEMATICA VIETNAMICA, 2020, 45 (01) :83-91
[40]   Complex Monge-Ampere equation for measures supported on real submanifolds [J].
Vu, Duc-Viet .
MATHEMATISCHE ANNALEN, 2018, 372 (1-2) :321-367