STABILITY AND HOLDER REGULARITY OF SOLUTIONS TO COMPLEX MONGE-AMPERE EQUATIONS ON COMPACT HERMITIAN MANIFOLDS

被引:0
作者
Lu, Chinh H. [1 ]
Trong-Thuc Phung [2 ]
To, Tat-Dat [3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Ho Chi Minh City Univ Technol, VNU HCM, Ho Chi Minh City, Vietnam
[3] Univ Toulouse, Ecole Natl Aviat Civile, 7 Ave Edouard Belin, FR-31055 Toulouse 04, France
[4] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, France
关键词
Hermitian manifold; Complex Monge-Ampere equation; Stability; Comparison principle; ENVELOPES; CURRENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, omega) be a compact Hermitian manifold. We establish a stability result for solutions to complex Monge-Ampere equations with right-hand side in L-p, p > 1. Using this we prove that the solutions are Holder continuous with the same exponent as in the Kahler case by Demailly-Dinew-Guedj-Kolodziej-Pham-Zeriahi. Our techniques also apply to the setting of big cohomology classes on compact Kahler manifolds.
引用
收藏
页码:2019 / 2045
页数:28
相关论文
共 50 条
[21]   C1,1 regularity for degenerate complex Monge-Ampere equations and geodesic rays [J].
Chu, Jianchun ;
Tosatti, Valentino ;
Weinkove, Ben .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) :292-312
[22]   Weak subsolutions to complex Monge-Ampere equations [J].
Guedj, Vincent ;
Lu, Chinh H. ;
Zeriahi, Ahmed .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (03) :727-738
[23]   Characterization of Monge-Ampere measures with Holder continuous potentials [J].
Tien-Cuong Dinh ;
Viet-Anh Nguyen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :67-84
[24]   The Dirichlet problem for degenerate complex Monge-Ampere equations [J].
Phong, D. H. ;
Sturm, Jacob .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2010, 18 (01) :145-170
[25]   On the Dirichlet Problem for a Class of Singular Complex Monge-Ampere Equations [J].
Feng, Ke ;
Shi, Ya Long ;
Xu, Yi Yan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (02) :209-220
[26]   Existence of C∞ local solutions of the complex Monge-Ampere equation [J].
Kallel-Jallouli, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1103-1108
[27]   Weak solutions of complex Hessian equations on compact Hermitian manifolds [J].
Kolodziej, Slawomir ;
Ngoc Cuong Nguyen .
COMPOSITIO MATHEMATICA, 2016, 152 (11) :2221-2248
[28]   The complex Monge-Ampere operator in the Cegrell classes [J].
Czyz, Rafal .
DISSERTATIONES MATHEMATICAE, 2009, (466) :5-+
[29]   Remarks on the Homogeneous Complex Monge-Ampere Equation [J].
Guan, Pengfei .
COMPLEX ANALYSIS: SEVERAL COMPLEX VARIABLES AND CONNECTIONS WITH PDE THEORY AND GEOMETRY, 2010, :175-185
[30]   A Subsolution Theorem for the Monge-Ampere Equation over an Almost Hermitian Manifold [J].
Zhang, Jiaogen .
ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) :2040-2062