Integrability aspects of the vortex filament equation for pseudo-null curves

被引:5
作者
del Amor, Jose [1 ]
Gimenez, Angel [2 ]
Lucas, Pascual [1 ]
机构
[1] Univ Murcia, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
[2] Univ Miguel Hernandez Elche, Ctr Invest Operat, Avda Univ S-N, Elche 03202, Alicante, Spain
关键词
Curve evolution; pseudo-null curves; Lie algebra; integrability; Burgers' equation; EVOLUTION; SURFACES; SYSTEMS; MOTIONS;
D O I
10.1142/S0219887817500906
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An algebraic background in order to study the integrability properties of pseudo-null curve motions in a three-dimensional Lorentzian space form is developed. As an application, we delve into the relationship between the Burgers' equation and the pseudo-null vortex filament equation. A recursion operator for the pseudo-null vortex filament equation is also provided.
引用
收藏
页数:21
相关论文
共 28 条
  • [1] [Anonymous], 1993, DIRAC STRUCTURES INT
  • [2] [Anonymous], 1991, What is Integrability?
  • [3] Integrable systems in three-dimensional Riemannian geometry
    Beffa, GM
    Sanders, JA
    Wang, JP
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (02) : 143 - 167
  • [4] Blaszak M., 1998, Multi-Hamiltonian Theory of Dynamical Systems
  • [5] Burgers JM, 1948, Advances in Applied Mechanics, V1, P171
  • [6] Integrable equations arising from motions of plane curves. II
    Chou, KS
    Qu, CZ
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2003, 13 (05) : 487 - 517
  • [7] Motions of curves in similarity geometries and Burgers-mKdV hierarchies
    Chou, KS
    Qu, CZ
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 19 (01) : 47 - 53
  • [8] Del Amor J., 2016, ADV MATH PHYS, V2016, P1
  • [9] A Lie algebra structure on variation vector fields along curves in 2-dimensional space forms
    del Amor, Jose
    Gimenez, Angel
    Lucas, Pascual
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 88 : 94 - 104
  • [10] Hamiltonian structure for null curve evolution
    del Amor, Jose
    Gimenez, Angel
    Lucas, Pascual
    [J]. NONLINEARITY, 2014, 27 (11) : 2627 - 2641