Experiment data-driven modeling of tokamak discharge in EAST

被引:16
作者
Wan, Chenguang [1 ,2 ]
Yu, Zhi [1 ]
Wang, Feng [1 ]
Liu, Xiaojuan [1 ]
Li, Jiangang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
关键词
tokamak; discharge modeling; machine learning; NEURAL-NETWORKS; DISRUPTION PREDICTION; IDENTIFICATION; JET; INSTABILITIES;
D O I
10.1088/1741-4326/abf419
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A neural network model of tokamak discharge is developed based on the experimental dataset of a superconducting long-pulse tokamak (EAST) campaign 2016-2018. The purpose is to reproduce the response of diagnostic signals to actuator signals without introducing additional physical models. In the present work, the discharge curves of electron density n (e), stored energy W (mhd), and loop voltage V (loop) were reproduced from a series of actuator signals. For n (e) and W (mhd), the average similarity between the modeling results and the experimental data achieve 89% and 97%, respectively. The promising results demonstrate that the data-driven methodology provides an alternative to the physical-driven methodology for tokamak discharge modeling. The method presented in the manuscript has the potential of being used for validating the tokamak's experimental proposals, which could advance and optimize experimental planning and validation.
引用
收藏
页数:13
相关论文
共 88 条
  • [1] Improvements in disruption prediction at ASDEX Upgrade
    Aledda, R.
    Cannas, B.
    Fanni, A.
    Pau, A.
    Sias, G.
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 698 - 702
  • [2] [Anonymous], 2015, TECHNICAL REPORT
  • [3] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [4] [Anonymous], 2016, TensorFlow: large-scale machine learning on heterogeneous distributed systems
  • [5] [Anonymous], 1994, Neural Comput. Appl, DOI DOI 10.1007/BF01415011
  • [6] Metis: a fast integrated tokamak modelling tool for scenario design
    Artaud, J. F.
    Imbeaux, F.
    Garcia, J.
    Giruzzi, G.
    Aniel, T.
    Basiuk, V
    Becoulet, A.
    Bourdelle, C.
    Buravand, Y.
    Decker, J.
    Dumont, R.
    Eriksson, L. G.
    Garbet, X.
    Guirlet, R.
    Hoang, G. T.
    Huynh, P.
    Joffrin, E.
    Litaudon, X.
    Maget, P.
    Moreau, D.
    Nouailletas, R.
    Pegourie, B.
    Peysson, Y.
    Schneide, M.
    Urban, J.
    [J]. NUCLEAR FUSION, 2018, 58 (10)
  • [7] The CRONOS suite of codes for integrated tokamak modelling
    Artaud, J. F.
    Basiuk, V.
    Imbeaux, F.
    Schneider, M.
    Garcia, J.
    Giruzzi, G.
    Huynh, P.
    Aniel, T.
    Albajar, F.
    Ane, J. M.
    Becoulet, A.
    Bourdelle, C.
    Casati, A.
    Colas, L.
    Decker, J.
    Dumont, R.
    Eriksson, L. G.
    Garbet, X.
    Guirlet, R.
    Hertout, P.
    Hoang, G. T.
    Houlberg, W.
    Huysmans, G.
    Joffrin, E.
    Kim, S. H.
    Koechl, F.
    Lister, J.
    Litaudon, X.
    Maget, P.
    Masset, R.
    Pegourie, B.
    Peysson, Y.
    Thomas, P.
    Tsitroneand, E.
    Turco, F.
    [J]. NUCLEAR FUSION, 2010, 50 (04)
  • [8] Neural networks for real time determination of radiated power in JET
    Barana, O
    Murari, A
    Franz, P
    Ingesson, LC
    Manduchi, G
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (05) : 2038 - 2043
  • [9] REAL-TIME CONTROL OF A TOKAMAK PLASMA USING NEURAL NETWORKS
    BISHOP, CM
    HAYNES, PS
    SMITH, MEU
    TODD, TN
    TROTMAN, DL
    [J]. NEURAL COMPUTATION, 1995, 7 (01) : 206 - 217
  • [10] Reconstruction of magnetic configurations in W7-X using artificial neural networks
    Boeckenhoff, Daniel
    Blatzheim, Marko
    Hoelbe, Hauke
    Niemann, Holger
    Pisano, Fabio
    Labahn, Roger
    Pedersen, Thomas Sunn
    [J]. NUCLEAR FUSION, 2018, 58 (05)