Conditions for entanglement in multipartite systems

被引:38
作者
Hillery, Mark [1 ]
Ho Trung Dung [1 ,2 ]
Zheng, Hongjun [1 ]
机构
[1] CUNY Hunter Coll, Dept Phys, New York, NY 10065 USA
[2] Acad Sci & Technol, Inst Phys, Ho Chi Minh City, Vietnam
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 06期
基金
美国国家科学基金会;
关键词
QUANTUM ENTANGLEMENT; INEQUALITIES; STATES; INFORMATION; BELL;
D O I
10.1103/PhysRevA.81.062322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce two entanglement conditions that take the form of inequalities involving expectation values of operators. These conditions are sufficient conditions for entanglement; that is, if they are satisfied the state is entangled, but if they are not, one can say nothing about the entanglement of the state. These conditions are quite flexible, because the operators in them are not specified, and they are particularly useful in detecting multipartite entanglement. We explore the range of utility of these conditions by considering a number of examples of entangled states, and seeing under what conditions entanglement in them can be detected by the inequalities presented here.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Inseparability inequalities for higher order moments for bipartite systems [J].
Agarwal, GS ;
Biswas, A .
NEW JOURNAL OF PHYSICS, 2005, 7
[2]   BELL INEQUALITIES WITH A MAGNITUDE OF VIOLATION THAT GROWS EXPONENTIALLY WITH THE NUMBER OF PARTICLES [J].
ARDEHALI, M .
PHYSICAL REVIEW A, 1992, 46 (09) :5375-5378
[3]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[4]  
Hardy G. H., 1952, Inequalities
[5]   Entanglement conditions for two-mode states [J].
Hillery, M ;
Zubairy, MS .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[6]   Quantum secret sharing [J].
Hillery, M ;
Buzek, V ;
Berthiaume, A .
PHYSICAL REVIEW A, 1999, 59 (03) :1829-1834
[7]   Entanglement conditions for two-mode states: Applications [J].
Hillery, Mark ;
Zubairy, M. Suhail .
PHYSICAL REVIEW A, 2006, 74 (03)
[8]   Detecting entanglement with non-Hermitian operators [J].
Hillery, Mark ;
Ho Trung Dung ;
Niset, Julien .
PHYSICAL REVIEW A, 2009, 80 (05)
[9]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[10]   THE BELL AND GHZ THEOREMS - A POSSIBLE 3-PHOTON INTERFERENCE EXPERIMENT AND THE QUESTION OF NONLOCALITY [J].
KLYSHKO, DN .
PHYSICS LETTERS A, 1993, 172 (06) :399-403