A POSTERIORI ERROR ESTIMATES FOR THE TWO-STEP BACKWARD DIFFERENTIATION FORMULA METHOD FOR PARABOLIC EQUATIONS

被引:22
|
作者
Akrivis, Georgios [1 ]
Chatzipantelidis, Panagiotis [2 ]
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
[2] Univ Crete, Dept Math, Iraklion 71409, Greece
关键词
parabolic equations; two-step backward differentiation formula method; residual; two-step backward differentiation formula reconstruction; a posteriori error analysis; CRANK-NICOLSON METHOD;
D O I
10.1137/090756995
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive optimal order residual-based a posteriori error estimates for time discretizations by the two-step backward differentiation formula (BDF) method for linear parabolic equations. Appropriate reconstructions of the approximate solution play a key role in the analysis. To utilize the BDF method we employ one step by both the trapezoidal method or the backward Euler scheme. Our a posteriori error estimates are of optimal order for the former choice and suboptimal for the latter. Simple numerical experiments illustrate this behavior.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 50 条