Quantum state transformations and the Schubert calculus

被引:38
作者
Daftuar, S
Hayden, P [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
基金
美国国家科学基金会;
关键词
entanglement; majorization; moment map; Schubert calculus;
D O I
10.1016/j.aop.2004.09.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent developments in mathematics have provided powerful tools for comparing the eigenvalues of matrices related to each other via a moment map. In this paper, we survey some of the more concrete aspects of the approach with a particular focus on applications to quantum information theory. After discussing the connection between Horn's Problem and Nielsen's Theorem, we move on to characterizing the eigenvalues of the partial trace of a matrix. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 122
页数:43
相关论文
共 37 条
[1]  
Alberti P. M., 1982, Stochasticity and Partial Order
[2]  
[Anonymous], 1982, Graduate Texts in Mathematics
[3]  
BELKALE P, 1999, THESIS U CHICAGO
[4]   Quantum channel capacities [J].
Bennett, CH ;
Shor, PW .
SCIENCE, 2004, 303 (5665) :1784-+
[5]   Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion [J].
Berenstein, A ;
Sjamaar, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :433-466
[6]  
Bhatia R., 1997, Matrix Analysis, Graduate Texts in Mathematics
[7]  
Bravyi S, 2004, QUANTUM INF COMPUT, V4, P12
[8]  
Cannasda Silva A., 2001, Lecture notes in mathematics, V1764
[9]  
CHRISTANDL M, SPECTRA DENSITY OPER
[10]  
EDWARDS HM, 1984, GRADUATE TEXTS MATH