Sliding Discrete Linear Canonical Transform

被引:39
作者
Sun, Yan-Nan [1 ]
Li, Bing-Zhao [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transform; discrete linear canonical transform; Horner algorithm; sliding discrete linear canonical transform; FRACTIONAL FOURIER; ALGORITHM; FRESNEL; DISCRETIZATION; CONVOLUTION; COMPUTATION; OPTICS;
D O I
10.1109/TSP.2018.2855658
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The linear canonical transform (LCT) has been shown to be one of the most powerful tools in signal processing, and in this paper, we propose an adaptive approach for the computation of the discrete LCT (DLCT), termed the sliding discrete linear canonical transform (SDLCT). First, we introduce a scheme for the single-point DLCT, which can effectively calculate a single or a few linear canonical spectra. Second, the SDLCT is proposed based on an iterative algorithm to meet the requirements of online spectral analysis when only a subset of N frequencies are required from an (N) over tilde -point discrete LCT (N <= (N) over tilde). The additivity and reversibility properties of the proposed algorithms are also discussed in detail. Third, the DLCT convolution operation is obtained to reduce the spectral leakage of the proposed algorithm, and time-domain windowing is implemented via frequency-domain convolution. Finally, we present two methods to assess performance with regard to computational complexity and precision and to show the correctness of the derived results.
引用
收藏
页码:4553 / 4563
页数:11
相关论文
共 39 条
  • [1] [Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
  • [2] [Anonymous], 1979, INTEGRAL TRANSFORMS
  • [3] Atkinson K.E., 1978, An Introduction to Numerical Analysis
  • [4] Optimal filtering with linear canonical transformations
    Barshan, B
    Kutay, MA
    Ozaktas, HM
    [J]. OPTICS COMMUNICATIONS, 1997, 135 (1-3) : 32 - 36
  • [5] A fast algorithm for the linear canonical transform
    Campos, Rafael G.
    Figueroa, Jared
    [J]. SIGNAL PROCESSING, 2011, 91 (06) : 1444 - 1447
  • [7] A Tighter Uncertainty Principle for Linear Canonical Transform in Terms of Phase Derivative
    Dang, Pei
    Deng, Guan-Tie
    Qian, Tao
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (21) : 5153 - 5164
  • [8] Convolution theorems for the linear canonical transform and their applications
    Deng Bing
    Tao Ran
    Wang Yue
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2006, 49 (05): : 592 - 603
  • [9] Quaternion Wigner-Ville distribution associated with the linear canonical transforms
    Fan, Xiang-Li
    Kou, Kit Ian
    Liu, Ming-Sheng
    [J]. SIGNAL PROCESSING, 2017, 130 : 129 - 141
  • [10] Novel method for parameter estimation of Newton's rings based on CFRFT and ER-WCA
    Guo, Yong
    Li, Bing-Zhao
    [J]. SIGNAL PROCESSING, 2018, 144 : 118 - 126