Cup products in Hopf-cyclic cohomology

被引:21
作者
Khalkhali, M [1 ]
Rangipour, B
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[2] Univ Victoria, Victoria, BC, Canada
关键词
D O I
10.1016/j.crma.2004.10.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct cup products of two different kinds for Hopf-cyclic cohomology When the Hopf algebra reduces to the ground field our first cup product reduces to Connes' cup product in ordinary cyclic cohomology. The second cup product generalizes Connes-Moscovici's characteristic map for actions of Hopf algebras on algebras. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 11 条
[1]   Equivariant cyclic cohomology of H-algebras [J].
Akbarpour, R ;
Khalkhali, M .
K-THEORY, 2003, 29 (04) :231-252
[2]   Cyclic cohomology and Hopf algebras [J].
Connes, A ;
Moscovici, H .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (01) :97-108
[3]   Cyclic cohomology and Hopf algebra symmetry [J].
Connes, A ;
Moscovici, H .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 52 (01) :1-28
[4]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246
[5]  
Connes A., 1986, PITNAM RES NOTES MAT, V123, P52
[6]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[7]   Secondary characteristic classes and cyclic cohomology of Hopf algebras [J].
Gorokhovsky, A .
TOPOLOGY, 2002, 41 (05) :993-1016
[8]   Hopf-cyclic homology and cohomology with coefficients [J].
Hajac, PM ;
Khalkhali, M ;
Rangipour, B ;
Sommerhäuser, Y .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) :667-672
[9]   Stable anti-Yetter-Drinfeld modules [J].
Hajac, PM ;
Khalkhali, M ;
Rangipour, B ;
Sommerhäuser, Y .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :587-590
[10]   On Cartan homotopy formulas in cyclic homology [J].
Khalkhali, M .
MANUSCRIPTA MATHEMATICA, 1997, 94 (01) :111-132