Ramanujan-type congruences for overpartitions modulo 5

被引:25
作者
Chen, William Y. C. [1 ,2 ]
Sun, Lisa H. [1 ]
Wang, Rong-Hua [1 ]
Zhang, Li [1 ]
机构
[1] Nankai Univ, LPMC TJKLC, Ctr Corabinator, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
美国国家科学基金会;
关键词
Overpartition; Ramanujan-type congruence; Modular form; Hecke operator; Hecke eigenform; JAGGED PARTITIONS; FORMS;
D O I
10.1016/j.jnt.2014.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p) over bar (n) denote the number of overpartitions of n. In this paper, we show that (p) over bar (5n) (-1)(n)(p) over bar (4 . 5n) (mod 5) for n >= 0 and (p) over bar (n) (-1)(n)(p) over bar (4n) (mod 8) for n >= 0 by using the relation of the generating function of (p) over bar (5n) modulo 5 found by Treneer and the 2-adic expansion of the generating function of (p) over bar (n) due to Mahlburg. As a consequence, we deduce that (p) over bar (4(k)(40n + 35)) 0 (mod 40) for n, k >= 0. When k = 0, it was conjectured by Hirschhorn and Sellers, and confirmed by Chen and Xia. Furthermore, applying the Hecke operator on phi(q)(3) and the fact that phi(q)(3) is a Hecke eigenform, we obtain an infinite family of congruences (p) over bar (4(k) . 5l(2)n) 0 (mod 5), where k >= 0 and.e is a prime such that l 3 (mod 5) and (-n/l) = -1. Moreover, we show that (p) over bar (5(2)n) (p) over bar (5(4)n) (mod 5) for n >= 0. So we are led to the congruences (p) over bar (4(k)5(2i+3)(5n +/- 1)) 0 (mod 5) for n, k,i >= 0. In this way, we obtain various Ramanujan-type congruences for (p) over bar (n) modulo 5 such as (p) over bar (45(3n + 1)) 0 (mod 5) and (p) over bar (125(5n +/- 1)) 0 (mod 5) for n >= 0. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 21 条
[1]   On the two-dimensional theta functions of the Borweins [J].
Alaca, Ayse ;
Alaca, Saban ;
Williams, Kenneth S. .
ACTA ARITHMETICA, 2006, 124 (02) :177-195
[2]  
Berndt BC., 2006, NUMBER THEORY SPIRIT
[3]   Congruences of multipartition functions modulo powers of primes [J].
Chen, William Y. C. ;
Du, Daniel K. ;
Hou, Qing-Hu ;
Sun, Lisa H. .
RAMANUJAN JOURNAL, 2014, 35 (01) :1-19
[4]   Proof of a conjecture of Hirschhorn and Sellers on overpartitions [J].
Chen, William Y. C. ;
Xia, Ernest X. W. .
ACTA ARITHMETICA, 2014, 163 (01) :59-69
[5]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[6]  
Corteel Sylvie., 2004, ANN COMB, V8, P287, DOI [10.1007/s00026-004-0221-7, DOI 10.1007/S00026-004-0221-7]
[7]   Jagged partitions [J].
Fortin, JF ;
Jacob, P ;
Mathieu, P .
RAMANUJAN JOURNAL, 2005, 10 (02) :215-235
[8]  
Fortin JF, 2005, ELECTRON J COMB, V12
[9]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65
[10]  
Hirschhorn M. D., 2005, INTEGERS, V5, pA20