ON DEFORMATIONS OF HYPERBOLIC VARIETIES

被引:0
作者
Kummer, Mario [1 ]
Shamovich, Eli [2 ]
机构
[1] Tech Univ Dresden, Fak Math, Inst Geometrie, Zellescher Weg 12-14, D-01062 Dresden, Germany
[2] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
关键词
Hyperbolic variety; Hilbert scheme; deformations; POLYNOMIALS; FAMILIES; REPRESENTATIONS; INEQUALITY;
D O I
10.17323/1609-4514-2021-21-3-593-612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study flat deformations of real subschemes of P-n, hyperbolic with respect to a fixed linear subspace, i.e., admitting a finite surjective and real fibered linear projection. We show that the subset of the corresponding Hilbert scheme consisting of such subschemes is closed and connected in the classical topology. Every smooth variety in this set lies in the interior of this set. Furthermore, we provide sufficient conditions for a hyperbolic subscheme to admit a flat deformation to a smooth hyperbolic subscheme. This leads to new examples of smooth hyperbolic varieties.
引用
收藏
页码:593 / 612
页数:20
相关论文
共 33 条
[1]  
ANDRADAS C, 1996, ERGEBNISSE MATH IHRE, V33
[2]  
[Anonymous], 2010, Deformation theory
[3]   Hyperbolic polynomials and convex analysis [J].
Bauschke, HH ;
Güler, O ;
Lewis, AS ;
Sendov, HS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (03) :470-488
[4]   REAL ALGEBRAIC KNOTS OF LOW DEGREE [J].
Bjorklund, Johan .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (09) :1285-1309
[5]  
Bochnak J., 1998, ERGEBNISSE MATH IHRE, V36
[6]  
Branden P., ARXIV180903255MATHCO
[7]  
Bruns W, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/b105283
[8]   The Central Curve in Linear Programming [J].
De Loera, Jesus A. ;
Sturmfels, Bernd ;
Vinzant, Cynthia .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (04) :509-540
[9]  
GARDING L, 1959, J MATH MECH, V8, P957
[10]  
Grothendieck A., 1965, Inst. Hautes Etudes Sci. Publ. Math., P231