Gyroid structures for 3D-printed heterogeneous radiotherapy phantoms

被引:25
作者
Tino, R. [1 ,2 ,3 ]
Leary, M. [1 ,2 ]
Yeo, A. [3 ]
Brandt, M. [1 ,2 ]
Kron, T. [2 ,3 ]
机构
[1] RMIT Univ, RMIT Ctr Addit Manufacture, Innovat Mfg Res Grp Med Mfg, Melbourne, Vic, Australia
[2] Queensland Univ Technol, ARC Ind Transformat Training Ctr Addit Biomfg, Brisbane, Qld, Australia
[3] Univ Melbourne, Peter MacCallum Canc Inst, Phys Sci Dept, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Gyroids; triply periodic minimal surfaces; lung tissue; personalised medicine; cellular structures; patient-specific imaging phantoms;
D O I
10.1088/1361-6560/ab48ab
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The extreme customisation and rapid prototyping capabilities of the 3D printing process allows the manufacture of low-cost and patient-specific radiotherapy phantoms for quality assurance purposes. However, the associated printing techniques and materials are experimentally limited and are yet to be quantified in terms of manufacturability. In addition to this, there lacks research in utilising naturally inspired structures, known as triply periodic minimal surfaces (TPMS), as a structural manufacturing basis for these phantoms, enabling material heterogeneity, which is a significant factor in attaining patient-specificity. We propose the use of Gyroid structures for radiotherapy phantom applications to investigate Gyroid-phantom manufacturability, the mathematical definition of Gyroids and their effects on hounsfield units (HU). The printed Gyroid phantoms were assessed for manufacturability using optical microscopy and micro-computed tomography (CT), and material hounsfield-equivalence using standard medical CT. A mean HU range of???900 to???390 were achieved from the fabricated Gyroid phantoms with varying standard deviation. Compared to traditional printing infills such as grid and slit structures, the Gyroid phantoms were observed to produce isotropic HU and SD at varied scanning orientations, which optimizes CT attenuations in modulating the hounsfield-equivalence of printed structures. This study not only demonstrates the feasibility of manipulating the structural parameters of Gyroids in simulating tissue imaging attenuations but also opens significant research opportunities in fabricating patient-specific phantoms with added pathological features for end-to-end radiotherapy testing.
引用
收藏
页数:11
相关论文
共 29 条
[1]   Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study [J].
Abueidda, Diab W. ;
Elhebeary, Mohamed ;
Shiang, Cheng-Shen ;
Pang, Siyuan ;
Abu Al-Rub, Rashid K. ;
Jasiuk, Iwona M. .
MATERIALS & DESIGN, 2019, 165
[2]  
Alderson S W, 1967, Google Patents, Patent No. [US3310885A, 3310885]
[3]  
[Anonymous], 2011, INNOVATIVE DEV VIRTU, DOI DOI 10.1201/B11341-40
[4]   Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications [J].
Ataee, Arash ;
Li, Yuncang ;
Brandt, Milan ;
Wen, Cuie .
ACTA MATERIALIA, 2018, 158 :354-368
[5]   Technical Note: Characterization of custom 3D printed multiodality imaging phantoms [J].
Bieniosek, Matthew F. ;
Lee, Brian J. ;
Levin, Craig S. .
MEDICAL PHYSICS, 2015, 42 (10) :5913-5918
[6]   Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment [J].
Ceh, Justin ;
Youd, Tom ;
Mastrovich, Zach ;
Peterson, Cody ;
Khan, Sarah ;
Sasser, Todd A. ;
Sander, Ian M. ;
Doney, Justin ;
Turner, Clark ;
Leevy, W. Matthew .
SENSORS, 2017, 17 (03)
[7]   Price of isotropy in multidetector CT [J].
Dalrymple, Neal C. ;
Prasad, Srinivasa R. ;
El-Merhi, Fadi M. ;
Chintapalli, Kedar N. .
RADIOGRAPHICS, 2007, 27 (01) :49-U4
[8]  
Do Carmo Manfredo P., 2016, DIFFERENTIAL GEOMETR, VSecond
[9]   Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials [J].
Dolan, James A. ;
Wilts, Bodo D. ;
Vignolini, Silvia ;
Baumberg, Jeremy J. ;
Steiner, Ullrich ;
Wilkinson, Timothy D. .
ADVANCED OPTICAL MATERIALS, 2015, 3 (01) :12-32
[10]   Biomimetic gyroid nanostructures exceeding their natural origins [J].
Gan, Zongsong ;
Turner, Mark D. ;
Gu, Min .
SCIENCE ADVANCES, 2016, 2 (05)