Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs

被引:31
|
作者
Wang, Yuqing [1 ,2 ,3 ]
Zhu, Yingfang [1 ,2 ]
Ling, Yu [1 ,2 ]
Zhang, Haiyan [1 ]
Liu, Peng [1 ,2 ]
Baluska, Frantisek [4 ]
Samaj, Jozef [5 ]
Lin, Jinxing [1 ]
Wang, Qinli [1 ]
机构
[1] Chinese Acad Sci, Key Lab Photosynth & Mol Environm Physiol, Inst Bot, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] China Agr Univ, Coll Agron & Biotechnol, Beijing 100193, Peoples R China
[4] Univ Bonn, Inst Cellular & Mol Bot, Dept Plant Cell Biol, D-53115 Bonn, Germany
[5] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Fac Sci, Olomouc 78301, Czech Republic
来源
BMC PLANT BIOLOGY | 2010年 / 10卷
关键词
PERMEABILITY TRANSITION PORE; PROGRAMMED CELL-DEATH; ENDOPLASMIC-RETICULUM; PLASMA-MEMBRANE; CALCIUM-RELEASE; SALT STRESS; F-ACTIN; CYTOSKELETON; POLLEN; SIGNAL;
D O I
10.1186/1471-2229-10-53
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+](c)), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs. Results: In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs. Conclusions: Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+](c). We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Mitochondrial Ca2+ uptake pathways
    Elustondo, Pia A.
    Nichols, Matthew
    Robertson, George S.
    Pavlov, Evgeny V.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2017, 49 (01) : 113 - 119
  • [32] Mitochondrial Ca2+ signals in autophagy
    Cardenas, Cesar
    Foskett, J. Kevin
    CELL CALCIUM, 2012, 52 (01) : 44 - 51
  • [33] The mitochondrial Ca2+ uniporter complex
    Foskett, J. Kevin
    Philipson, Benjamin
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 78 : 3 - 8
  • [34] The dynamics of mitochondrial Ca2+ fluxes
    de la Fuente, Sergio
    Montenegro, Pablo
    Fonteriz, Rosalba I.
    Moreno, Alfredo
    Lobaton, Carmen D.
    Montero, Mayte
    Alvarez, Javier
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (10): : 1727 - 1735
  • [35] Mitochondrial organization and Ca2+ uptake
    Olson, Marnie L.
    Chalmers, Susan
    McCarron, John G.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 158 - 167
  • [36] Regulation of Mitochondrial Ca2+ Uptake
    Murphy, Elizabeth
    Steenbergen, Charles
    ANNUAL REVIEW OF PHYSIOLOGY, VOL 83, 2021, 83 : 107 - 126
  • [37] The mitochondrial Ca2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca2+ oscillations
    Patel, Akshar
    Simkulet, Matthew
    Maity, Soumya
    Venkatesan, Manigandan
    Matzavinos, Anastasios
    Madesh, Muniswamy
    Alevriadou, B. Rita
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Ca2+ homeostasis, Ca2+ signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones
    Komori, Yoko
    Tanaka, Megumi
    Kuba, Motoko
    Ishii, Masahiro
    Abe, Maiko
    Kitamura, Naoki
    Verkhratsky, Alexei
    Shibuya, Izumi
    Dayanithi, Govindan
    CELL CALCIUM, 2010, 48 (06) : 324 - 332
  • [39] The luminal Ca2+ chelator, TPEN, inhibits NAADP-induced Ca2+ release
    Morgan, Anthony J.
    Parrington, John
    Galione, Antony
    CELL CALCIUM, 2012, 52 (06) : 481 - 487
  • [40] Regulation of endogenous and heterologous Ca2+ release-activated Ca2+ currents by pH
    Beck, Andreas
    Fleig, Andrea
    Penner, Reinhold
    Peinelt, Christine
    CELL CALCIUM, 2014, 56 (03) : 235 - 243