Disruption of actin filaments induces mitochondrial Ca2+ release to the cytoplasm and [Ca2+]c changes in Arabidopsis root hairs

被引:31
|
作者
Wang, Yuqing [1 ,2 ,3 ]
Zhu, Yingfang [1 ,2 ]
Ling, Yu [1 ,2 ]
Zhang, Haiyan [1 ]
Liu, Peng [1 ,2 ]
Baluska, Frantisek [4 ]
Samaj, Jozef [5 ]
Lin, Jinxing [1 ]
Wang, Qinli [1 ]
机构
[1] Chinese Acad Sci, Key Lab Photosynth & Mol Environm Physiol, Inst Bot, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
[3] China Agr Univ, Coll Agron & Biotechnol, Beijing 100193, Peoples R China
[4] Univ Bonn, Inst Cellular & Mol Bot, Dept Plant Cell Biol, D-53115 Bonn, Germany
[5] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Fac Sci, Olomouc 78301, Czech Republic
来源
BMC PLANT BIOLOGY | 2010年 / 10卷
关键词
PERMEABILITY TRANSITION PORE; PROGRAMMED CELL-DEATH; ENDOPLASMIC-RETICULUM; PLASMA-MEMBRANE; CALCIUM-RELEASE; SALT STRESS; F-ACTIN; CYTOSKELETON; POLLEN; SIGNAL;
D O I
10.1186/1471-2229-10-53
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+](c)), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs. Results: In this study, we found that treatments with latrunculin B (Lat-B) and jasplakinolide (Jas), which depolymerize and polymerize actin filaments respectively, decreased membrane potential and Ca2+ stores in the mitochondria of Arabidopsis root hairs. Simultaneously, these treatments induced an instantaneous increase of cytoplasmic Ca2+, followed by a continuous decrease. All of these effects were inhibited by pretreatment with cyclosporin A (Cs A), a representative blocker of the mitochondrial permeability transition pore (mPTP). Moreover, we found there was a Ca2+ concentration gradient in mitochondria from the tip to the base of the root hair, and this gradient could be disrupted by actin-acting drugs. Conclusions: Based on these results, we concluded that the disruption of actin filaments caused by Lat-B or Jas promoted irreversible opening of the mPTP, resulting in mitochondrial Ca2+ release into the cytoplasm, and consequent changes in [Ca2+](c). We suggest that normal polymerization and depolymerization of actin filaments are essential for mitochondrial Ca2+ storage in root hairs.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking
    Fan, Jun-Ling
    Wei, Xue-Zhi
    Wan, Li-Chuan
    Zhang, Ling-Yun
    Zhao, Xue-Qin
    Liu, Wei-Zhong
    Hao, Huai-Qin
    Zhang, Hai-Yan
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (11) : 1157 - 1167
  • [2] Routes of Ca2+ Shuttling during Ca2+ Oscillations FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS
    Pecze, Laszlo
    Blum, Walter
    Schwaller, Beat
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (47) : 28214 - 28230
  • [3] Mitochondrial VDAC, the Na+/Ca2+ Exchanger, and the Ca2+ Uniporter in Ca2+ Dynamics and Signaling
    Shoshan-Barmatz, Varda
    De, Soumasree
    MEMBRANE DYNAMICS AND CALCIUM SIGNALING, 2017, 981 : 323 - 347
  • [4] Extracellular Ca2+ induces desensitized cytosolic Ca2+ rise sensitive to phospholipase C inhibitor which suppresses root growth with Ca2+ dependence
    Zhao, Man
    Chen, Jianhua
    Jin, Huiqing
    Qi, Zhi
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 252
  • [5] Disruption of actin filaments causes redistribution of ryanodine receptor Ca2+ channels in honeybee photoreceptor cells
    Baumann, O
    NEUROSCIENCE LETTERS, 2001, 306 (03) : 181 - 184
  • [6] Mitochondrial Ca2+ Processing by a Unit of Mitochondrial Ca2+ Uniporter and Na+/Ca2+ Exchanger Supports the Neuronal Ca2+ Influx via Activated Glutamate Receptors
    Strokin, Mikhail
    Reiser, Georg
    NEUROCHEMICAL RESEARCH, 2016, 41 (06) : 1250 - 1262
  • [7] Mitochondrial Ca2+ and apoptosis
    Giorgi, Carlotta
    Baldassari, Federica
    Bononi, Angela
    Bonora, Massimo
    De Marchi, Elena
    Marchi, Saverio
    Missiroli, Sonia
    Patergnani, Simone
    Rimessi, Alessandro
    Suski, Jan M.
    Wieckowski, Mariusz R.
    Pinton, Paolo
    CELL CALCIUM, 2012, 52 (01) : 36 - 43
  • [8] Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains
    Low, Jiun T.
    Shukla, Alka
    Behrendorff, Natasha
    Thorn, Peter
    JOURNAL OF CELL SCIENCE, 2010, 123 (18) : 3201 - 3208
  • [9] Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis
    Kowaltowski, Alicia J.
    Menezes-Filho, Sergio L.
    Assali, Essam A.
    Goncalves, Isabela G.
    Cabral-Costa, Joao Victor
    Abreu, Phablo
    Miller, Nathanael
    Nolasco, Patricia
    Laurindo, Francisco R. M.
    Bruni-Cardoso, Alexandre
    Shirihai, Orian S.
    FASEB JOURNAL, 2019, 33 (12) : 13176 - 13188
  • [10] A model of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria
    Selivanov, VA
    Ichas, F
    Holmuhamedov, EL
    Jouaville, LS
    Evtodienko, YV
    Mazat, JP
    BIOPHYSICAL CHEMISTRY, 1998, 72 (1-2) : 111 - 121