A dual characterization of length spaces with application to Dirichlet metric spaces

被引:21
作者
Stollmann, Peter [1 ]
机构
[1] Tech Univ, Fak Math, D-09107 Chemnitz, Germany
关键词
metric spaces; length metric; Dirichlet forms; VECTOR-FIELDS; HEAT KERNEL; FORMS; THEOREM;
D O I
10.4064/sm198-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 31 条
[1]  
[Anonymous], 1970, ANN MATH STUD
[2]   DIRICHLET SPACES [J].
BEURLING, A ;
DENY, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (02) :208-215
[3]   ESPACES DE DIRICHLET .1. LE CAS ELEMENTAIRE [J].
BEURLING, A ;
DENY, J .
ACTA MATHEMATICA, 1958, 99 (3-4) :203-224
[4]   A Saint-Venant type principle for dirichlet forms on discontinuous media. [J].
Biroli, M ;
Mosco, U .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :125-181
[5]  
Bouleau N., 1991, Dirichlet forms and analysis on Wiener space, V14
[6]  
de Monvel AB, 2003, J REINE ANGEW MATH, V561, P131
[7]   Sch'nol's theorem for strongly local forms [J].
de Monvel, Anne Boutet ;
Lenz, Daniel ;
Stollmann, Peter .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 173 (01) :189-211
[8]  
FEFFERMAN C, 1983, C HARM AN HON A ZYGM, P590
[9]   FUNDAMENTAL-SOLUTIONS FOR 2ND-ORDER SUBELLIPTIC OPERATORS [J].
FEFFERMAN, CL ;
SANCHEZCALLE, A .
ANNALS OF MATHEMATICS, 1986, 124 (02) :247-272
[10]  
Frank R., INTRINSIC METR UNPUB