Bioengineering Strategies for Protein-Based Nanoparticles

被引:76
作者
Diaz, Dennis [1 ]
Care, Andrew [1 ,2 ]
Sunna, Anwar [1 ,2 ,3 ]
机构
[1] Macquarie Univ, Dept Mol Sci, Sydney, NSW 2109, Australia
[2] Macquarie Univ, Australian Res Council Ctr Excellence Nanoscale B, Sydney, NSW 2109, Australia
[3] Macquarie Univ, Biomol Discovery & Design Res Ctr, Sydney, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
protein-based nanoparticles; bioengineering; nanobiotechnology; synthetic biology; biomedicine; biocatalysis; virus-like particle; nanocages; VIRUS-LIKE PARTICLES; HEAT-SHOCK-PROTEIN; ANTIGEN DELIVERY NANOPLATFORMS; NONCANONICAL AMINO-ACIDS; TARGETED DRUG-DELIVERY; CAGE NANOPARTICLES; SACCHAROMYCES-CEREVISIAE; CAPSID PROTEIN; VAULT NANOPARTICLES; FERRITIN NANOCAGES;
D O I
10.3390/genes9070370
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
引用
收藏
页数:30
相关论文
共 228 条
[1]   The PyRosetta Toolkit: A Graphical User Interface for the Rosetta Software Suite [J].
Adolf-Bryfogle, Jared ;
Dunbrack, Roland L., Jr. .
PLOS ONE, 2013, 8 (07)
[2]   CPMV-DOX Delivers [J].
Aljabali, Alaa A. A. ;
Shukla, Sourabh ;
Lomonossoff, George P. ;
Steinmetz, Nicole F. ;
Evans, David J. .
MOLECULAR PHARMACEUTICS, 2013, 10 (01) :3-10
[3]   Cowpea Mosaic Virus Unmodified Empty Viruslike Particles Loaded with Metal and Metal Oxide [J].
Aljabali, Alaa A. A. ;
Sainsbury, Frank ;
Lomonossoff, George P. ;
Evans, David J. .
SMALL, 2010, 6 (07) :818-821
[4]  
Allen M, 2002, ADV MATER, V14, P1562, DOI 10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO
[5]  
2-D
[6]   Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively [J].
Aranda, A ;
del Olmo, ML .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (04) :1913-1922
[7]   Stabilization of a Protein Nanocage through the Plugging of a Protein-Protein Interfacial Water Pocket [J].
Ardejani, Maziar S. ;
Li, Noel X. ;
Orner, Brendan P. .
BIOCHEMISTRY, 2011, 50 (19) :4029-4037
[8]   Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2 [J].
Arora, Upasana ;
Tyagi, Poornima ;
Swaminathan, Sathyamangalam ;
Khanna, Navin .
JOURNAL OF NANOBIOTECHNOLOGY, 2012, 10
[9]   Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles [J].
Ashley, Carlee E. ;
Carnes, Eric C. ;
Phillips, Genevieve K. ;
Durfee, Paul N. ;
Buley, Mekensey D. ;
Lino, Christopher A. ;
Padilla, David P. ;
Phillips, Brandy ;
Carter, Mark B. ;
Willman, Cheryl L. ;
Brinker, C. Jeffrey ;
Caldeira, Jerri do Carmo ;
Chackerian, Bryce ;
Wharton, Walker ;
Peabody, David S. .
ACS NANO, 2011, 5 (07) :5729-5745
[10]   Stimuli Responsive Hierarchical Assembly of P22 Virus-like Particles [J].
Aumiller, William M., Jr. ;
Uchida, Masaki ;
Biner, Daniel W. ;
Miettinen, Heini M. ;
Lee, Byeongdu ;
Douglas, Trevor .
CHEMISTRY OF MATERIALS, 2018, 30 (07) :2262-2273