Single Image Dehazing With Depth-Aware Non-Local Total Variation Regularization

被引:77
作者
Liu, Qi [1 ]
Gao, Xinbo [2 ]
He, Lihuo [1 ]
Lu, Wen [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Haze removal; image dehazing; nonlocal total variation; adaptive regularization; CONTRAST ENHANCEMENT; HAZE REMOVAL; FRAMEWORK; RESTORATION; VISION;
D O I
10.1109/TIP.2018.2849928
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single image dehazing can benefit many computer vision applications hence has attracted much more attention in recent years. However, it still remains a challenging task due to its double uncertainty of scene transmission and scene radiance. The existing image dehazing methods usually impair edges in the estimated transmission which leads to halo effects in the dehazing results. Besides, most existing methods suffer from noise and artifacts amplification in dense haze region after dehazing. To address these challenges, we propose a transmission adaptive regularized image recovery method for high quality single image dehazing. An initial transmission map is first obtained by a boundary constraint on the haze model. Then it is refined by applying a non-local total variation (NLTV) regularization to keep depth structures while smoothing excessive details. Noticing that the artifacts amplification effect depends on scene transmission, a transmission adaptive regularized recovery method based on NLTV is proposed to simultaneously suppress visual artifacts and preserve image details in the final dehazing result. An efficient alternating optimization algorithm is also proposed to solve the regularization model. Thorough experimental results demonstrate that the proposed method can effectively suppress visual artifacts for degraded hazy images, and yields high-quality results comparative to the state-of-the-art dehazing methods both quantitatively and qualitatively.
引用
收藏
页码:5178 / 5191
页数:14
相关论文
共 49 条
[1]   Single Image Dehazing by Multi-Scale Fusion [J].
Ancuti, Codruta Orniana ;
Ancuti, Cosmin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) :3271-3282
[2]  
Ancuti C, 2016, IEEE IMAGE PROC, P2226, DOI 10.1109/ICIP.2016.7532754
[3]  
[Anonymous], 2006, P IEEE C COMP VIS PA
[4]   Non-Local Image Dehazing [J].
Berman, Dana ;
Treibitz, Tali ;
Avidan, Shai .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1674-1682
[5]   DehazeNet: An End-to-End System for Single Image Haze Removal [J].
Cai, Bolun ;
Xu, Xiangmin ;
Jia, Kui ;
Qing, Chunmei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5187-5198
[6]  
Caraffa Laurent, 2013, Computer Vision - ACCV 2012. 11th Asian Conference on Computer Vision. Revised Selected Papers, P13, DOI 10.1007/978-3-642-37447-0_2
[7]   Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization [J].
Chen, Chen ;
Do, Minh N. ;
Wang, Jue .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :576-591
[8]   Underwater Image Enhancement by Wavelength Compensation and Dehazing [J].
Chiang, John Y. ;
Chen, Ying-Ching .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1756-1769
[9]   Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging [J].
Choi, Lark Kwon ;
You, Jaehee ;
Bovik, Alan Conrad .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :3888-3901
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095