A Pyrazine-Based Polymer for Fast-Charge Batteries

被引:200
作者
Mao, Minglei [1 ,3 ,4 ]
Luo, Chao [2 ]
Pollard, Travis P. [5 ]
Hou, Singyuk [1 ]
Gao, Tao [1 ]
Fan, Xiulin [1 ]
Cui, Chunyu [1 ,3 ]
Yue, Jinming [4 ]
Tong, Yuxin [4 ]
Yang, Gaojing [4 ]
Deng, Tao [1 ]
Zhang, Ming [3 ]
Ma, Jianmin [3 ]
Suo, Liumin [4 ]
Borodin, Oleg [5 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] George Mason Univ, Dept Chem & Biochem, Fairfax, VA 22030 USA
[3] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[4] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
[5] US Army, Res Lab, Electrochem Branch, Power & Energy Div Sensor & Electron Devices Dire, Adelphi, MD 20783 USA
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
fast charging; polymer cathodes; rechargeable Al batteries; rechargeable Mg batteries; sodium ion batteries; ORGANIC ELECTRODE MATERIALS; SODIUM-ION BATTERIES; ENERGY-STORAGE; CATHODE MATERIALS; LITHIUM; MAGNESIUM; ALUMINUM; POLYANILINE; INTERCALATION; PERFORMANCE;
D O I
10.1002/anie.201910916
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g(-1) at 50 mA g(-1), corresponding to the energy density of 440 Wh kg(-1), and still retains 100 mAh g(-1) at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g(-1) after 200 cycles in Mg batteries and 92 mAh g(-1) after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.
引用
收藏
页码:17820 / 17826
页数:7
相关论文
共 82 条
  • [11] Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example
    Gao, Tao
    Hou, Singyuk
    Khue Huynh
    Wang, Fei
    Eidson, Nico
    Fan, Xiulin
    Han, Fudong
    Luo, Chao
    Mao, Minglei
    Li, Xiaogang
    Wang, Chunsheng
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14767 - 14776
  • [12] Reversible Electrochemical Intercalation of Aluminum in Mo6S8
    Geng, Linxiao
    Lv, Guocheng
    Xing, Xuebing
    Guo, Juchen
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (14) : 4926 - 4929
  • [13] Carbonyls: Powerful Organic Materials for Secondary Batteries
    Haeupler, Bernhard
    Wild, Andreas
    Schubert, Ulrich S.
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (11)
  • [14] Multielectron Redox Compounds for Organic Cathode Quasi-Solid State Lithium Battery
    Hanyu, Yuki
    Sugimoto, Toyonari
    Ganbe, Yoshiyuki
    Masuda, Asuna
    Honma, Itaru
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) : A6 - A9
  • [15] Biologically inspired pteridine redox centres for rechargeable batteries
    Hong, Jihyun
    Lee, Minah
    Lee, Byungju
    Seo, Dong-Hwa
    Park, Chan Beum
    Kang, Kisuk
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [16] Sustainable cycling enabled by a high-concentration electrolyte for lithium-organic batteries
    Huang, Ying
    Fang, Chun
    Zhang, Wang
    Liu, Qingju
    Huang, Yunhui
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (05) : 608 - 611
  • [17] Cathode materials for magnesium and magnesium-ion based batteries
    Huie, Matthew M.
    Bock, David C.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Takeuchi, Kenneth J.
    [J]. COORDINATION CHEMISTRY REVIEWS, 2015, 287 : 15 - 27
  • [18] Powering up the Future: Radical Polymers for Battery Applications
    Janoschka, Tobias
    Hager, Martin D.
    Schubert, Ulrich S.
    [J]. ADVANCED MATERIALS, 2012, 24 (48) : 6397 - 6409
  • [19] Electrodeposition of aluminium from ionic liquids:: Part I -: electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-l-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids
    Jiang, T.
    Brym, M. J. Chollier
    Dube, G.
    Lasia, A.
    Brisard, G. M.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2006, 201 (1-2) : 1 - 9
  • [20] KENICHI O, 2009, ADV MATER, V21, P2339