Trapping scaling for bifurcations in the Vlasov systems

被引:6
作者
Barre, J. [1 ,2 ]
Metivier, D. [1 ]
Yamaguchi, Y. Y. [3 ]
机构
[1] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR CNRS 7351, Parc Valrose, F-06108 Nice 02, France
[2] Inst Univ France, F-75005 Paris, France
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
NONLINEAR PLASMA-OSCILLATIONS; PERIODIC BGK WAVES; POISSON SYSTEM; INSTABILITY; EQUILIBRIA; EQUATION; STABILITY; DYNAMICS; STATES; MODES;
D O I
10.1103/PhysRevE.93.042207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study nonoscillating bifurcations of nonhomogeneous steady states of the Vlasov equation, a situation occurring in galactic models, or for Bernstein-Greene-Kruskal modes in plasma physics. Through an unstable manifold expansion, we show that in one spatial dimension the dynamics is very sensitive to the initial perturbation: the instability may saturate at small amplitude-generalizing the "trapping scaling" of plasma physics-or may grow to produce a large-scale modification of the system. Furthermore, resonances are strongly suppressed, leading to different phenomena with respect to the homogeneous case. These analytical findings are illustrated and extended by direct numerical simulations with a cosine interaction potential.
引用
收藏
页数:10
相关论文
共 33 条
[1]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[2]   PERTURBATION METHOD FOR WAVES IN A SLOWLY VARYING PLASMA [J].
BALDWIN, DE .
PHYSICS OF FLUIDS, 1964, 7 (06) :782-791
[3]  
Balmforth N. J., ARXIV13030065
[4]   On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation-Case of an attractive cosine potential [J].
Barre, Julien ;
Yamaguchi, Yoshiyuki Y. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (08)
[5]   Algebraic damping in the one-dimensional Vlasov equation [J].
Barre, Julien ;
Olivetti, Alain ;
Yamaguchi, Yoshiyuki Y. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)
[6]   Dynamics of perturbations around inhomogeneous backgrounds in the HMF model [J].
Barre, Julien ;
Olivetti, Alain ;
Yamaguchi, Yoshiyuki Y. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[7]   EXACT NONLINEAR PLASMA OSCILLATIONS [J].
BERNSTEIN, IB ;
GREENE, JM ;
KRUSKAL, MD .
PHYSICAL REVIEW, 1957, 108 (03) :546-550
[8]   COLLECTIVE INSTABILITIES AND HIGH-GAIN REGIME IN A FREE-ELECTRON LASER [J].
BONIFACIO, R ;
PELLEGRINI, C ;
NARDUCCI, LM .
OPTICS COMMUNICATIONS, 1984, 50 (06) :373-378
[9]   A dynamical stability criterion for inhomogeneous quasi-stationary states in long-range systems [J].
Campa, Alessandro ;
Chavanis, Pierre-Henri .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[10]   Statistical mechanics and dynamics of solvable models with long-range interactions [J].
Campa, Alessandro ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (3-6) :57-159