Deep learning predictions of galaxy merger stage and the importance of observational realism

被引:93
作者
Bottrell, Connor [1 ]
Hani, Maan H. [1 ]
Teimoorinia, Hossen [1 ,2 ]
Ellison, Sara L. [1 ]
Moreno, Jorge [3 ,4 ,5 ]
Torrey, Paul [6 ]
Hayward, Christopher C. [7 ]
Thorp, Mallory [1 ]
Simard, Luc [2 ]
Hernquist, Lars [4 ]
机构
[1] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada
[2] Natl Res Council Canada, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada
[3] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA
[4] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[5] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
[6] Univ Florida, Dept Astron, 211 Bryant Space Sci Ctr, Gainesville, FL 32611 USA
[7] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Methods: data analysis; Methods: numerical; Techniques: image processing; Galaxies: general; Galaxies: interactions; Galaxies: photometry; DIGITAL SKY SURVEY; SUPERMASSIVE BLACK-HOLES; DUST RADIATIVE-TRANSFER; BULGE PLUS DISC; SIMILAR-TO; ILLUSTRIS SIMULATION; TIME-SCALES; COSMOLOGICAL FRAMEWORK; ELLIPTIC GALAXIES; STELLAR FEEDBACK;
D O I
10.1093/mnras/stz2934
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning is becoming a popular tool to quantify galaxy morphologies and identify mergers. However, this technique relies on using an appropriate set of training data to be successful. By combining hydrodynamical simulations, synthetic observations, and convolutional neural networks (CNNs), we quantitatively assess how realistic simulated galaxy images must be in order to reliably classify mergers. Specifically, we compare the performance of CNNs trained with two types of galaxy images, stellar maps and dust-inclusive radiatively transferred images, each with three levels of observational realism: (1) no observational effects (idealized images), (2) realistic sky and point spread function (semirealistic images), and (3) insertion into a real sky image (fully realistic images). We find that networks trained on either idealized or semireal images have poor performance when applied to survey-realistic images. In contrast, networks trained on fully realistic images achieve 87.1 per cent classification performance. Importantly, the level of realism in the training images is much more important than whether the images included radiative transfer, or simply used the stellarmaps (87.1 per cent compared to 79.6 per cent accuracy, respectively). Therefore, one can avoid the large computational and storage cost of running radiative transfer with a relatively modest compromise in classification performance. Making photometry-based networks insensitive to colour incurs a very mild penalty to performance with survey-realistic data (86.0 per cent with r-only compared to 87.1 per cent with gri). This result demonstrates that while colour can be exploited by colour-sensitive networks, it is not necessary to achieve high accuracy and so can be avoided if desired. We provide the public release of our statistical observational realism suite, REALSIM, as a companion to this paper.
引用
收藏
页码:5390 / 5413
页数:24
相关论文
共 153 条
[1]   THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY [J].
Abazajian, Kevork N. ;
Adelman-McCarthy, Jennifer K. ;
Agueros, Marcel A. ;
Allam, Sahar S. ;
Prieto, Carlos Allende ;
An, Deokkeun ;
Anderson, Kurt S. J. ;
Anderson, Scott F. ;
Annis, James ;
Bahcall, Neta A. ;
Bailer-Jones, C. A. L. ;
Barentine, J. C. ;
Bassett, Bruce A. ;
Becker, Andrew C. ;
Beers, Timothy C. ;
Bell, Eric F. ;
Belokurov, Vasily ;
Berlind, Andreas A. ;
Berman, Eileen F. ;
Bernardi, Mariangela ;
Bickerton, Steven J. ;
Bizyaev, Dmitry ;
Blakeslee, John P. ;
Blanton, Michael R. ;
Bochanski, John J. ;
Boroski, William N. ;
Brewington, Howard J. ;
Brinchmann, Jarle ;
Brinkmann, J. ;
Brunner, Robert J. ;
Budavari, Tamas ;
Carey, Larry N. ;
Carliles, Samuel ;
Carr, Michael A. ;
Castander, Francisco J. ;
Cinabro, David ;
Connolly, A. J. ;
Csabai, Istvan ;
Cunha, Carlos E. ;
Czarapata, Paul C. ;
Davenport, James R. A. ;
de Haas, Ernst ;
Dilday, Ben ;
Doi, Mamoru ;
Eisenstein, Daniel J. ;
Evans, Michael L. ;
Evans, N. W. ;
Fan, Xiaohui ;
Friedman, Scott D. ;
Frieman, Joshua A. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 182 (02) :543-558
[2]   A new approach to galaxy morphology. I. Analysis of the sloan digital sky survey early data release [J].
Abraham, RG ;
van den Bergh, S ;
Nair, P .
ASTROPHYSICAL JOURNAL, 2003, 588 (01) :218-229
[3]   Using transfer learning to detect galaxy mergers [J].
Ackermann, Sandro ;
Schawinski, Kevin ;
Zhang, Ce ;
Weigel, Anna K. ;
Turp, M. Dennis .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (01) :415-425
[4]   Metallicity of high stellar mass galaxies with signs of merger events [J].
Alonso, M. Sol ;
Michel-Dansac, L. ;
Lambas, D. G. .
ASTRONOMY & ASTROPHYSICS, 2010, 514
[5]  
[Anonymous], ARXIV190611248
[6]   EFFICIENT THREE-DIMENSIONAL NLTE DUST RADIATIVE TRANSFER WITH SKIRT [J].
Baes, Maarten ;
Verstappen, Joris ;
De Looze, Ilse ;
Fritz, Jacopo ;
Saftly, Waad ;
Perez, Edgardo Vidal ;
Stalevski, Marko ;
Valcke, Sander .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 196 (02)
[7]   DYNAMICS OF INTERACTING GALAXIES [J].
BARNES, JE ;
HERNQUIST, L .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1992, 30 :705-742
[8]   Tidally triggered star formation in close pairs of galaxies [J].
Barton, EJ ;
Geller, MJ ;
Kenyon, SJ .
ASTROPHYSICAL JOURNAL, 2000, 530 (02) :660-679
[9]   The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc? [J].
Berg, Trystyn A. M. ;
Simard, Luc ;
Mendel, J. Trevor ;
Ellison, Sara L. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 440 (01) :L66-L70
[10]   Structural and photometric classification of galaxies. I. Calibration based on a nearby galaxy sample [J].
Bershady, MA ;
Jangren, A ;
Conselice, CJ .
ASTRONOMICAL JOURNAL, 2000, 119 (06) :2645-2663