Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year

被引:41
作者
Ambuhl, Lukas [1 ]
Loder, Allister [1 ]
Leclercq, Ludovic [2 ]
Menendez, Monica [3 ]
机构
[1] Swiss Fed Inst Technol, Inst Transport Planning & Syst, Zurich, Switzerland
[2] Univ Gustave Eiffel, Univ Lyon, LICIT, ENTPE, Lyon, France
[3] NYU Abu Dhabi, Div Engn, Abu Dhabi, U Arab Emirates
基金
欧洲研究理事会;
关键词
Macroscopic fundamental diagram (MFD); Clustering; Empirical data; Prediction; MACROSCOPIC FUNDAMENTAL DIAGRAM; TIME-SERIES; ANALYTICAL APPROXIMATION; URBAN; NETWORKS; HYSTERESIS; CONGESTION; DYNAMICS;
D O I
10.1016/j.trc.2021.103065
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Urban road transportation performance is the result of a complex interplay between the network supply and the travel demand. Fortunately, the framework around the macroscopic fundamental diagram (MFD) provides an efficient description of network-wide traffic performance. In this paper, we show how temporal patterns of vehicle traffic define the performance of urban road networks. We present two high-resolution traffic datasets covering a year each. We introduce a methodology to quantify the similarity of macroscopic traffic patterns. We do so by using the concepts of the MFD and a dynamic time warping (DTW) based algorithm for time series. This allows us to derive a few representative MFD clusters that capture the essential macroscopic traffic patterns. We then provide an in-depth analysis of traffic heterogeneity in the network which is indicative of the previously found clusters. Thereupon, we define a parsimonious classification approach to predict the expected MFD clusters early in the morning with high accuracy.
引用
收藏
页数:21
相关论文
共 69 条
[1]   Approximative Network Partitioning for MFDs from Stationary Sensor Data [J].
Ambuehl, Lukas ;
Loder, Allister ;
Zheng, Nan ;
Axhausen, Kay W. ;
Menendez, Monica .
TRANSPORTATION RESEARCH RECORD, 2019, 2673 (06) :94-103
[2]   Introducing a Re-Sampling Methodology for the Estimation of Empirical Macroscopic Fundamental Diagrams [J].
Ambuehl, Lukas ;
Loder, Allister ;
Bliemer, Michiel C. J. ;
Menendez, Monica ;
Axhausen, Kay W. .
TRANSPORTATION RESEARCH RECORD, 2018, 2672 (20) :239-248
[3]  
Ambuhl L., 2018, 7 TRANSPORT RES AREN, DOI [10.3929/ETHZ-B-000206987, DOI 10.3929/ETHZ-B-000206987]
[4]   A functional form with a physical meaning for the macroscopic fundamental diagram [J].
Ambuhl, Lukas ;
Loder, Allister ;
Bliemer, Michiel C. J. ;
Menendez, Monica ;
Axhausen, Kay W. .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2020, 137 :119-132
[5]  
Ampountolas K., 2015, 94 ANN M TRANSP RES
[6]  
[Anonymous], 1953, Psychometrika, DOI DOI 10.1007/BF02289263
[7]  
Axhausen K.W., 2016, 96 ANN M TRANSP RES
[8]   The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances [J].
Bagnall, Anthony ;
Lines, Jason ;
Bostrom, Aaron ;
Large, James ;
Keogh, Eamonn .
DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (03) :606-660
[9]   The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping [J].
Bahlmann, C ;
Burkhardt, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (03) :299-310
[10]  
Berndt D. J., 1994, P KDD WORKSH, P359