Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency

被引:191
作者
Zunino, Luciano [1 ,2 ,3 ]
Zanin, Massimiliano [4 ]
Tabak, Benjamin M. [5 ,6 ]
Perez, Dario G. [7 ]
Rosso, Osvaldo A. [8 ,9 ]
机构
[1] UIB, CSIC, IFISC, E-07122 Palma de Mallorca, Spain
[2] CIC, CONICET La Plata, Ctr Invest Opt, RA-1897 Gonnet, Argentina
[3] UNLP, Fac Ingn, Dept Ciencias Basicas, RA-1900 La Plata, Argentina
[4] Univ Autonoma Madrid, E-28049 Madrid, Spain
[5] Banco Cent Brasil SBS Quadra 3, BR-70074900 Brasilia, DF, Brazil
[6] Univ Catolica Brasilia, Brasilia, DF, Brazil
[7] PUCV, Inst Fis, Valparaiso 2340025, Chile
[8] Univ Fed Minas Gerais, Inst Ciencias Exatas Fis, BR-31270901 Belo Horizonte, MG, Brazil
[9] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Chaos & Biol Grp, RA-1428 Buenos Aires, DF, Argentina
关键词
Complexity-entropy causality plane; Bandt and Pompe method; Stock market inefficiency; FINANCIAL TIME-SERIES; LOCAL HURST EXPONENT; PERMUTATION ENTROPY; STATISTICAL COMPLEXITY; RANKING EFFICIENCY; EMERGING MARKETS; EQUITY MARKETS; VOLATILITY; PREDICTABILITY; PREDICTION;
D O I
10.1016/j.physa.2010.01.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The complexity-entropy Causality plane has been recently introduced as a powerful tool for discriminating Gaussian from non-Gaussian process and different degrees of correlations [O.A. Rosso, H.A. Larrondo, M.T. Martin, A. Plastino, M.A. Fuentes, Distinguishing noise from chaos, Phys. Rev. Lett. 99 (2007) 154102]. We propose to use this representation space to distinguish the stage of stock market development. Our empirical results demonstrate that this statistical physics approach is useful, allowing a more refined classification of stock market dynamics. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1891 / 1901
页数:11
相关论文
共 58 条
[1]  
BACHELIER L, 1900, THESIS SORBONNE PARI
[2]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[3]   Order patterns in time series [J].
Bandt, Christoph ;
Shiha, Faten .
JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (05) :646-665
[4]   Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance [J].
Bassler, Kevin E. ;
Gunaratne, Gemunu H. ;
McCauley, Joseph L. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) :343-353
[5]   Correlations in financial time series: established versus emerging markets [J].
Beben, M ;
Orlowski, A .
EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (04) :527-530
[6]   Long memory and volatility clustering: Is the empirical evidence consistent across stock markets? [J].
Bentes, Sonia R. ;
Menezes, Rui ;
Mendes, Diana A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (15) :3826-3830
[7]   Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions [J].
Cajueiro, DO ;
Tabak, BM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (3-4) :656-664
[8]   Ranking efficiency for emerging equity markets II [J].
Cajueiro, DO ;
Tabak, BM .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :671-675
[9]   Ranking efficiency for emerging markets [J].
Cajueiro, DO ;
Tabak, BM .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :349-352
[10]   The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient [J].
Cajueiro, DO ;
Tabak, BM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (3-4) :521-537