Apo and ligand-bound structures of ModA from the archaeon Methanosarcina acetivorans

被引:14
作者
Chan, Sum [1 ]
Giuroiu, Iulia [1 ]
Chernishof, Irina [1 ]
Sawaya, Michael R. [1 ]
Chiang, Janet [1 ]
Gunsalus, Robert P. [1 ,2 ]
Arbing, Mark A. [1 ]
Perry, L. Jeanne [1 ]
机构
[1] Univ Calif Los Angeles, DOE, Inst Genom & Prote, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS | 2010年 / 66卷
关键词
MOLYBDATE-BINDING-PROTEIN; ACTIVE-TRANSPORT; CRYSTAL-STRUCTURE; SPECIFICITY; EVOLUTION; MODELS; STATE;
D O I
10.1107/S1744309109055158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The trace-element oxyanion molybdate, which is required for the growth of many bacterial and archaeal species, is transported into the cell by an ATP-binding cassette (ABC) transporter superfamily uptake system called ModABC. ModABC consists of the ModA periplasmic solute-binding protein, the integral membrane-transport protein ModB and the ATP-binding and hydrolysis cassette protein ModC. In this study, X-ray crystal structures of ModA from the archaeon Methanosarcina acetivorans (MaModA) have been determined in the apoprotein conformation at 1.95 and 1.69 angstrom resolution and in the molybdate-bound conformation at 2.25 and 2.45 angstrom resolution. The overall domain structure of MaModA is similar to other ModA proteins in that it has a bilobal structure in which two mixed alpha/beta domains are linked by a hinge region. The apo MaModA is the first unliganded archaeal ModA structure to be determined: it exhibits a deep cleft between the two domains and confirms that upon binding ligand one domain is rotated towards the other by a hinge-bending motion, which is consistent with the 'Venus flytrap' model seen for bacterial-type periplasmic binding proteins. In contrast to the bacterial ModA structures, which have tetrahedral coordination of their metal substrates, molybdate-bound MaModA employs octahedral coordination of its substrate like other archaeal ModA proteins.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 39 条
[1]   Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport [J].
Austermuhle, MI ;
Hall, JA ;
Klug, CS ;
Davidson, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (27) :28243-28250
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri [J].
Balan, Andrea ;
Santacruz-Perez, Carolina ;
Moutran, Alexandre ;
Souza Ferreira, Luis Carlos ;
Neshich, Goran ;
Ribeiro Goncalves Barbosa, Joao Alexandre .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2008, 1784 (02) :393-399
[4]   What is the relationship between the global structures of apo and holo proteins? [J].
Brylinski, Michal ;
Skolnick, Jeffrey .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 70 (02) :363-377
[5]  
Clarke TE, 2000, NAT STRUCT BIOL, V7, P287
[6]   VERIFICATION OF PROTEIN STRUCTURES - PATTERNS OF NONBONDED ATOMIC INTERACTIONS [J].
COLOVOS, C ;
YEATES, TO .
PROTEIN SCIENCE, 1993, 2 (09) :1511-1519
[7]   Structure, function, and evolution of bacterial ATP-binding cassette systems [J].
Davidson, Amy L. ;
Dassa, Elie ;
Orelle, Cedric ;
Chen, Jue .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2008, 72 (02) :317-364
[8]  
DeLano W. L., 2002, PYMOL MOL VIEWER
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]   The genome of M-acetivorans reveals extensive metabolic and physiological diversity [J].
Galagan, JE ;
Nusbaum, C ;
Roy, A ;
Endrizzi, MG ;
Macdonald, P ;
FitzHugh, W ;
Calvo, S ;
Engels, R ;
Smirnov, S ;
Atnoor, D ;
Brown, A ;
Allen, N ;
Naylor, J ;
Stange-Thomann, N ;
DeArellano, K ;
Johnson, R ;
Linton, L ;
McEwan, P ;
McKernan, K ;
Talamas, J ;
Tirrell, A ;
Ye, WJ ;
Zimmer, A ;
Barber, RD ;
Cann, I ;
Graham, DE ;
Grahame, DA ;
Guss, AM ;
Hedderich, R ;
Ingram-Smith, C ;
Kuettner, HC ;
Krzycki, JA ;
Leigh, JA ;
Li, WX ;
Liu, JF ;
Mukhopadhyay, B ;
Reeve, JN ;
Smith, K ;
Springer, TA ;
Umayam, LA ;
White, O ;
White, RH ;
de Macario, EC ;
Ferry, JG ;
Jarrell, KF ;
Jing, H ;
Macario, AJL ;
Paulsen, I ;
Pritchett, M ;
Sowers, KR .
GENOME RESEARCH, 2002, 12 (04) :532-542