Input shaping and time-optimal control of flexible structures

被引:34
作者
Lau, MA
Pao, LY [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Boulder, CO 80309 USA
[2] Turabo Univ, Sch Engn, Gurabo, PR 00778 USA
基金
美国国家科学基金会;
关键词
time-optimal control; input shaping;
D O I
10.1016/S0005-1098(03)00024-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of minimum time input shaping and its relation to the classical time-optimal control problem. We demonstrate that some typical minimum time input shapers are equivalent to the time-optimal control of different, although related, systems. The analytical proofs are based on the optimality criteria stipulated by the Karush-Kuhn-Tucker conditions. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:893 / 900
页数:8
相关论文
共 20 条
[1]   CONTROLLED MOTION IN AN ELASTIC WORLD [J].
BOOK, WJ .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1993, 115 (2B) :252-261
[2]  
de Roover D, 1998, P AMER CONTR CONF, P2648, DOI 10.1109/ACC.1998.688329
[3]   Control for slosh-free motion of an open container [J].
Feddema, JT ;
Dohrmann, CR ;
Parker, GG ;
Robinett, RD ;
Romero, VJ ;
Schmitt, DJ .
IEEE CONTROL SYSTEMS MAGAZINE, 1997, 17 (01) :29-36
[4]  
JANSEN J, 1992, ORNLTM12198
[5]   An approach to control input shaping with application to coordinate measuring machines [J].
Jones, SD ;
Ulsoy, AG .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1999, 121 (02) :242-247
[6]  
Junkins J. L., 1993, Introduction to Dynamics and Control of Flexible Structures
[7]  
Kirk D. E., 1970, OPTIMAL CONTROL THEO, P227
[8]   ROBUST TIME-OPTIMAL CONTROL OF UNCERTAIN FLEXIBLE SPACECRAFT [J].
LIU, QA ;
WIE, B .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (03) :597-604
[9]  
MAGEE DP, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P924
[10]   Robust minimum time control of flexible structures [J].
Pao, LY ;
Singhose, WE .
AUTOMATICA, 1998, 34 (02) :229-236