A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis

被引:149
|
作者
Liu, Guifang [1 ]
Bao, Huaiqian [1 ,2 ]
Han, Baokun [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R China
[2] AUCMA Co Ltd, Qingdao 266510, Peoples R China
基金
中国国家自然科学基金;
关键词
ROTATING MACHINERY;
D O I
10.1155/2018/5105709
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machinery fault diagnosis is pretty vital in modern manufacturing industry since an early detection can avoid some dangerous situations. Among various diagnosis methods, data-driven approaches are gaining popularity with the widespread development of data analysis techniques. In this research, an effective deep learning method known as stacked autoencoders (SAEs) is proposed to solve gearbox fault diagnosis. The proposed method can directly extract salient features from frequency-domain signals and eliminate the exhausted use of handcrafted features. Furthermore, to reduce the overfitting problem in training process and improve the performance for small training set, dropout technique and ReLU activation function arc introduced into SAEs. Two gearbox datasets are employed to conform the effectiveness of the proposed method; the result indicates that the proposed method can not only achieve significant improvement but also is superior to the raw SAEs and some other traditional methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
    Che Changchang
    Wang Huawei
    Ni Xiaomei
    Fu Qiang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2020, 72 (07) : 947 - 953
  • [22] Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder
    Coutinho, Maria G. F.
    Torquato, Matheus F.
    Fernandes, Marcelo A. C.
    IEEE ACCESS, 2019, 7 : 40674 - 40694
  • [23] Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
    Lu, Chen
    Wang, Zhen-Ya
    Qin, Wei -Li
    Ma, Jian
    SIGNAL PROCESSING, 2017, 130 : 377 - 388
  • [24] Transformer fault diagnosis based on adversarial generative networks and deep stacked autoencoder
    Zhang, Lei
    Xu, Zhongyang
    Lu, Chen
    Qiao, Tianjiao
    Su, Hongzhi
    Luo, Yazhou
    HELIYON, 2024, 10 (09)
  • [25] Transformer Fault Diagnosis Based on Adversarial Generative Networks and Deep Stacked Autoencoder
    Zhang, Lei
    Xu, Zhongyang
    Qiao, Tianjiao
    Lu, Chen
    Su, Hongzhi
    Luo, Yazhou
    2024 THE 7TH INTERNATIONAL CONFERENCE ON ENERGY, ELECTRICAL AND POWER ENGINEERING, CEEPE 2024, 2024, : 496 - 504
  • [26] Multi-layer neural network with deep belief network for gearbox fault diagnosis
    Chen, Zhiqiang
    Li, Chuan
    Sanchez, Rene-Vinicio
    JOURNAL OF VIBROENGINEERING, 2015, 17 (05) : 2379 - 2392
  • [27] Blade Rub-Impact Fault Identification Using Autoencoder-Based Nonlinear Function Approximation and a Deep Neural Network
    Prosvirin, Alexander E.
    Piltan, Farzin
    Kim, Jong-Myon
    SENSORS, 2020, 20 (21) : 1 - 22
  • [28] Deep adversarial transfer neural network for fault diagnosis of wind turbine gearbox
    Ma, Yuanchi
    Liu, Yongqian
    Yang, Zhiling
    Cheng, Ming
    Meng, Hang
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (15) : 1750 - 1762
  • [29] Indoor Localization With an Autoencoder-Based Convolutional Neural Network
    Arslantas, Hatice
    Okdem, Selcuk
    IEEE ACCESS, 2024, 12 : 46059 - 46066
  • [30] PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network
    Liu, Jiawei
    Li, Qi
    Han, Ying
    Zhang, Guorui
    Meng, Xiang
    Yu, Jiaxi
    Chen, Weirong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2019, 5 (04) : 1279 - 1293