Phase invariance of the semiconductor Bloch equations

被引:91
作者
Li, Jinbin [1 ,2 ]
Zhang, Xiao [3 ,4 ]
Fu, Silin [1 ,2 ]
Feng, Yongkang [1 ,2 ]
Hu, Bitao [1 ,2 ]
Du, Hongchuan [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Key Lab Special Funct Mat & Struct Design, Minist Educ, Lanzhou 730000, Gansu, Peoples R China
[3] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[4] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MoE, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-HARMONIC GENERATION;
D O I
10.1103/PhysRevA.100.043404
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the gauge invariance of the semiconductor Bloch equations (SBEs) in solid high-order harmonic generation (HHG). It is found that the gauge dependence of the SBEs can be attributed to the absence of Berry connection terms in the SBEs in previous studies. When the Berry connection terms are considered, the gauge invariance of the SBEs can be naturally preserved under an arbitrary global phase transformation. To satisfy the demand of the continuity of transition dipole matrix elements in one-dimensional calculations, we propose a gauge that is easy to implement numerically. Finally, the saddle point analysis shows that Berry connections can influence many properties of HHG, such as ellipticity dependence and even harmonic generation. This work uncovers the importance of the Berry connection terms that have been neglected for a long time in simulations of solid HHG.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Dynamical Birefringence: Electron-Hole Recollisions as Probes of Berry Curvature [J].
Banks, Hunter B. ;
Wu, Qile ;
Valovcin, Darren C. ;
Mack, Shawn ;
Gossard, Arthur C. ;
Pfeiffer, Loren ;
Liu, Ren-Bao ;
Sherwin, Mark S. .
PHYSICAL REVIEW X, 2017, 7 (04)
[2]  
BLOUNT EI, 1962, SOLID STATE PHYS, V13, P305
[3]  
Chacon A., ARXIV180701616V2
[4]   High-order harmonic generation from gapped graphene: Perturbative response and transition to nonperturbative regime [J].
Dimitrovski, Darko ;
Madsen, Lars Bojer ;
Pedersen, Thomas Garm .
PHYSICAL REVIEW B, 2017, 95 (03)
[5]   Enhanced high-order harmonic generation from periodic potentials in inhomogeneous laser fields [J].
Du, Tao-Yuan ;
Guan, Zhong ;
Zhou, Xiao-Xin ;
Bian, Xue-Bin .
PHYSICAL REVIEW A, 2016, 94 (02)
[6]   Ab initio multiscale simulation of high-order harmonic generation in solids [J].
Floss, Isabella ;
Lemell, Christoph ;
Wachter, Georg ;
Smejkal, Valerie ;
Sato, Shunsuke A. ;
Tong, Xiao-Min ;
Yabana, Kazuhiro ;
Burgdoerfer, Joachim .
PHYSICAL REVIEW A, 2018, 97 (01)
[7]   Multi-petahertz electronic metrology [J].
Garg, M. ;
Zhan, M. ;
Luu, T. T. ;
Lakhotia, H. ;
Klostermann, T. ;
Guggenmos, A. ;
Goulielmakis, E. .
NATURE, 2016, 538 (7625) :359-363
[8]  
Ghimire S, 2011, NAT PHYS, V7, P138, DOI [10.1038/nphys1847, 10.1038/NPHYS1847]
[9]   High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations [J].
Golde, D. ;
Meier, T. ;
Koch, S. W. .
PHYSICAL REVIEW B, 2008, 77 (07)
[10]   Finite-system effects on high-order harmonic generation: From atoms to solids [J].
Hansen, Kenneth K. ;
Bauer, Dieter ;
Madsen, Lars Bojer .
PHYSICAL REVIEW A, 2018, 97 (04)