Noncommutative connections on bimodules and Drinfeld twist deformation

被引:33
作者
Aschieri, Paolo [1 ,2 ]
Schenkel, Alexander [3 ]
机构
[1] Univ Piemonte Orientale, Dept Sci & Innovaz Tecnol, I-15121 Alessandria, Italy
[2] Univ Piemonte Orientale, Ist Nazl Fis Nucl, Gpr Coll Alessandria, I-15121 Alessandria, Italy
[3] Berg Univ Wuppertal, Fachgruppe Math, D-42119 Wuppertal, Germany
关键词
DIFFERENTIAL-CALCULUS; MANIFOLDS; ALGEBRAS; GEOMETRY;
D O I
10.4310/ATMP.2014.v18.n3.a1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Given a Hopf algebra H, we study modules and bimodules over an algebra A that carry an H-action, as well as their morphisms and connections. Bimodules naturally arise when considering noncommutative analogues of tensor bundles. For quasitriangular Hopf algebras and bimodules with an extra quasi-commutativity property we induce connections on the tensor product over A of two bimodules from connections on the individual bimodules. This construction applies to arbitrary connections, i.e. not necessarily H-equivariant ones, and further extends to the tensor algebra generated by a bimodule and its dual. Examples of these noncommutative structures arise in deformation quantization via Drinfeld twists of the commutative differential geometry of a smooth manifold, where the Hopf algebra H is the universal enveloping algebra of vector fields (or a finitely generated Hopf subalgebra). We extend the Drinfeld twist deformation theory of modules and algebras to morphisms and connections that are not necessarily H-equivariant. The theory canonically lifts to the tensor product structure.
引用
收藏
页码:513 / 612
页数:100
相关论文
共 35 条
[1]  
[Anonymous], 2000, LOND MATH SOC LECT N
[2]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[3]  
Aschieri Paolo, 2012, International Journal of Modern Physics: Conference Series, V13, P1, DOI 10.1142/S201019451200668X
[4]  
Aschieri P, 2009, LECT NOTES PHYS, V774, P1, DOI 10.1007/978-3-540-89793-4
[5]   On the noncommutative geometry of twisted spheres [J].
Aschieri, P ;
Bonechi, F .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 59 (02) :133-156
[6]   Bicovariant calculus on twisted ISO(N), quantum Poincare group and quantum Minkowski space [J].
Aschieri, P ;
Castellani, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (25) :4513-4549
[7]   Noncommutative geometry and gravity [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Wess, Julius .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) :1883-1911
[8]   Nonassociative Riemannian geometry by twisting [J].
Beggs, Edwin ;
Majid, Shahn .
QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY, 2010, 254
[9]  
Bieliavsky P, MEM AM MATH IN PRESS
[10]   Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples [J].
Connes, A ;
Dubois-Violette, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (03) :539-579