Tensor Decompositions in Wireless Communications and MIMO Radar

被引:64
作者
Chen, Hongyang [1 ]
Ahmad, Fauzia [2 ]
Vorobyov, Sergiy [3 ]
Porikli, Fatih [4 ]
机构
[1] Zhejiang Lab, Res Ctr Intelligent Network, Hangzhou 311121, Peoples R China
[2] Temple Univ, Dept Elect & Comp Engn, Philadelphia, PA 19122 USA
[3] Aalto Univ, Dept Signal Proc & Acoust, Espoo 00076, Finland
[4] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2606, Australia
关键词
CDMA; MIMO; millimeter wave; parallel factor analysis (PARAFAC); radar; rank; symbol recovery; tensor decomposition; tensor factorization; transmit beamspace; tucker model;
D O I
10.1109/JSTSP.2021.3061937
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The emergence of big data and the multidimensional nature of wireless communication signals present significant opportunities for exploiting the versatility of tensor decompositions in associated data analysis and signal processing. The uniqueness of tensor decompositions, unlike matrix-based methods, can be guaranteed under very mild and natural conditions. Harnessing the power of multilinear algebra through tensor analysis in wireless signal processing, channel modeling, and parametric channel estimation provides greater flexibility in the choice of constraints on data properties and permits extraction of more general latent data components than matrix-based methods. Tensor analysis has also found applications in Multiple-Input Multiple-Output (MIMO) radar because of its ability to exploit the inherent higher-dimensional signal structures therein. In this paper, we provide a broad overview of tensor analysis in wireless communications and MIMO radar. More specifically, we cover topics including basic tensor operations, common tensor decompositions via canonical polyadic and Tucker factorization models, wireless communications applications ranging from blind symbol recovery to channel parameter estimation, and transmit beamspace design and target parameter estimation in MIMO radar.
引用
收藏
页码:438 / 453
页数:16
相关论文
共 124 条
[1]   Principles of Mode-Selective MIMO OTHR [J].
Abramovich, Yuri I. ;
Frazer, Gordon J. ;
Johnson, Ben A. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) :1839-1868
[2]  
Agrawal D, 1998, IEEE VTC P, P2232
[3]  
[Anonymous], 2014, SCI CHINA INF SCI
[4]   Tensor-Based Channel Estimation for Massive MIMO-OFDM Systems [J].
Araujo, Daniel Costa ;
De Almeida, Andre L. F. ;
Da Costa, Joao P. C. L. ;
De Sousa Jr, Rafael T. .
IEEE ACCESS, 2019, 7 :42133-42147
[5]  
Bergin J, 2018, ARTECH HSE RADAR LIB, P1
[6]  
Bölcskei H, 2000, IEEE WCNC, P1, DOI 10.1109/WCNC.2000.904589
[7]  
Cao M.-Y., 2016, P IEEE STAT SIGN PRO, P243
[8]   Transmit Array Interpolation for DOA Estimation via Tensor Decomposition in 2-D MIMO Radar [J].
Cao, Ming-Yang ;
Vorobyov, Sergiy A. ;
Hassanien, Aboulnasr .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (19) :5225-5239
[9]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[10]   Joint Channel Estimation for Three-Hop MIMO Relaying Systems [J].
Cavalcante, Italo Vitor ;
de Almeida, Andre L. F. ;
Haardt, Martin .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (12) :2430-2434