Locality and causality in perturbative algebraic quantum field theory

被引:4
作者
Rejzner, Kasia [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
TIME ORDERED PRODUCTS; RENORMALIZATION;
D O I
10.1063/1.5111967
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss how seemingly different notions of locality and causality in quantum field theory can be unified using a non-Abelian generalization of the Hammerstein property (originally introduced as a weaker version of linearity). We also prove a generalization of the main theorem of renormalization, in which we do not require field independence.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Renormalization of quantum field theory on Riemannian manifolds [J].
Nguyen Viet Dang ;
Herscovich, Estanislao .
REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (06)
[32]   Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory [J].
Carfora, Mauro ;
Dappiaggi, Claudio ;
Drago, Nicolo ;
Rinaldi, Paolo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (01) :241-276
[33]   A C*-algebraic Approach to Interacting Quantum Field Theories [J].
Buchholz, Detlev ;
Fredenhagen, Klaus .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (02) :947-969
[34]   Renormalization and quantum field theory [J].
Borcherds, Richard E. .
ALGEBRA & NUMBER THEORY, 2011, 5 (05) :627-658
[35]   Noncommutative quantum field theory [J].
Grosse, Harald ;
Wulkenhaar, Raimar .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2014, 62 (9-10) :797-811
[36]   Shuffling quantum field theory [J].
Kreimer, D .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (03) :179-191
[37]   Tree Quantum Field Theory [J].
Gurau, Razvan ;
Magnen, Jacques ;
Rivasseau, Vincent .
ANNALES HENRI POINCARE, 2009, 10 (05) :867-891
[38]   Shuffling Quantum Field Theory [J].
D. Kreimer .
Letters in Mathematical Physics, 2000, 51 :179-191
[39]   Removing the Wigner bound in non-perturbative effective field theory [J].
Beck, Saar ;
Bazak, Betzalel ;
Barnea, Nir .
PHYSICS LETTERS B, 2020, 806
[40]   Dynamical Locality of the Free Scalar Field [J].
Fewster, Christopher J. ;
Verch, Rainer .
ANNALES HENRI POINCARE, 2012, 13 (07) :1675-1709