Disorder-Enhanced and Disorder-Independent Transport with Long-Range Hopping: Application to Molecular Chains in Optical Cavities

被引:50
作者
Chavez, Nahum C. [1 ,2 ,3 ]
Mattiotti, Francesco [1 ,2 ,4 ,5 ]
Mendez-Bermudez, J. A. [3 ]
Borgonovi, Fausto [1 ,2 ,6 ]
Celardo, G. Luca [3 ]
机构
[1] Univ Cattolica, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy
[2] Univ Cattolica, Interdisciplinary Labs Adv Mat Phys, Via Musei 41, I-25121 Brescia, Italy
[3] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[4] Ist Nazl Fis Nucl, Sez Pavia, Via Bassi 6, I-27100 Pavia, Italy
[5] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
[6] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
ENERGY-TRANSFER; SUPERRADIANCE; ABSENCE; STATES;
D O I
10.1103/PhysRevLett.126.153201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Overcoming the detrimental effect of disorder at the nanoscale is very hard since disorder induces localization and an exponential suppression of transport efficiency. Here we unveil novel and robust quantum transport regimes achievable in nanosystems by exploiting long-range hopping. We demonstrate that in a 1D disordered nanostructure in the presence of long-range hopping, transport efficiency, after decreasing exponentially with disorder at first, is then enhanced by disorder [disorder-enhanced transport (DET) regime] until, counterintuitively, it reaches a disorder-independent transport (DIT) regime, persisting over several orders of disorder magnitude in realistic systems. To enlighten the relevance of our results, we demonstrate that an ensemble of emitters in a cavity can be described by an effective long-range Hamiltonian. The specific case of a disordered molecular wire placed in an optical cavity is discussed, showing that the DIT and DET regimes can be reached with state-of-the-art experimental setups.
引用
收藏
页数:6
相关论文
共 52 条
[1]  
Abrahams E., 2010, 50 YEARS ANDERSON LO, V24, DOI DOI 10.1142/7663
[2]   Cavity polaritons in microcavities containing disordered organic semiconductors [J].
Agranovich, VM ;
Litinskaia, M ;
Lidzey, DG .
PHYSICAL REVIEW B, 2003, 67 (08)
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   Subradiant hybrid states in the open 3D Anderson-Dicke model [J].
Biella, A. ;
Borgonovi, F. ;
Kaiser, R. ;
Celardo, G. L. .
EPL, 2013, 103 (05)
[5]   Dark state semilocalization of quantum emitters in a cavity [J].
Botzung, T. ;
Hagenmueller, D. ;
Schutz, S. ;
Dubail, J. ;
Pupillo, G. ;
Schachenmayer, J. .
PHYSICAL REVIEW B, 2020, 102 (14)
[6]   Algebraic localization from power-law couplings in disordered quantum wires [J].
Botzung, Thomas ;
Vodola, Davide ;
Naldesi, Piero ;
Muller, Markus ;
Ercolessi, Elisa ;
Pupillo, Guido .
PHYSICAL REVIEW B, 2019, 100 (15)
[7]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[8]   Shielding and localization in the presence of long-range hopping [J].
Celardo, G. L. ;
Kaiser, R. ;
Borgonovi, F. .
PHYSICAL REVIEW B, 2016, 94 (14)
[9]   Interplay of superradiance and disorder in the Anderson Model [J].
Celardo, G. L. ;
Biella, A. ;
Kaplan, L. ;
Borgonovi, F. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3) :250-260
[10]   Superradiance transition in one-dimensional nanostructures: An effective non-Hermitian Hamiltonian formalism [J].
Celardo, G. L. ;
Kaplan, L. .
PHYSICAL REVIEW B, 2009, 79 (15)